Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inflammopharmacology ; 28(4): 795-817, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32189104

RESUMO

Respiratory disorders, especially non-communicable, chronic inflammatory diseases, are amongst the leading causes of mortality and morbidity worldwide. Respiratory diseases involve multiple pulmonary components, including airways and lungs that lead to their abnormal physiological functioning. Several signaling pathways have been reported to play an important role in the pathophysiology of respiratory diseases. These pathways, in addition, become the compounding factors contributing to the clinical outcomes in respiratory diseases. A range of signaling components such as Notch, Hedgehog, Wingless/Wnt, bone morphogenetic proteins, epidermal growth factor and fibroblast growth factor is primarily employed by these pathways in the eventual cascade of events. The different aberrations in such cell-signaling processes trigger the onset of respiratory diseases making the conventional therapeutic modalities ineffective. These challenges have prompted us to explore novel and effective approaches for the prevention and/or treatment of respiratory diseases. In this review, we have attempted to deliberate on the current literature describing the role of major cell signaling pathways in the pathogenesis of pulmonary diseases and discuss promising advances in the field of therapeutics that could lead to novel clinical therapies capable of preventing or reversing pulmonary vascular pathology in such patients.


Assuntos
Inflamação/metabolismo , Inflamação/patologia , Doenças Respiratórias/metabolismo , Doenças Respiratórias/patologia , Transdução de Sinais/fisiologia , Animais , Doença Crônica , Humanos
2.
Curr Diab Rep ; 19(5): 22, 2019 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-30905013

RESUMO

PURPOSE OF REVIEW: Type 1 diabetes (T1D) occurs when there is destruction of beta cells within the islets of Langerhans in the pancreas due to autoimmunity. It is considered a complex disease, and different complications can surface and worsen the condition if T1D is not managed well. Since it is an incurable disease, numerous treatments and therapies have been postulated in order to control T1D by balancing hyperglycemia control while minimizing hypoglycemic episodes. The purpose of this review is to primarily look into the current state of the available immunological therapies and their advantages for the treatment of T1D. RECENT FINDINGS: Over the years, immunological therapy has become the center of attraction to treat T1D. Immunomodulatory approaches on non-antigens involving agents such as cyclosporine A, mycophenolate mofetil, anti-CD20, cytotoxic T cells, anti-TNF, anti-CD3, and anti-thymocyte globulin as well as immunomodulative approaches on antigens such as insulin, glutamic acid decarboxylase, and heat shock protein 60 have been studied. Aside from these two approaches, studies and trials have also been conducted on regulatory T cells, dendritic cells, interleukin 2, interleukin 4, M2 macrophages, and rapamycin/interleukin 2 combination therapy to test their effects on patients with T1D. Many of these agents have successfully suppressed T1D in non-obese diabetic (NOD) mice and in human trials. However, some have shown negative results. To date, the insights into the management of the immune system have been increasing rapidly to search for potential therapies and treatments for T1D. Nevertheless, some of the challenges are still inevitable. A lot of work and effort need to be put into the investigation on T1D through immunological therapy, particularly to reduce complications to improve and enhance clinical outcomes.


Assuntos
Diabetes Mellitus Tipo 1 , Animais , Humanos , Imunoterapia , Insulina , Camundongos Endogâmicos NOD , Fator de Necrose Tumoral alfa
3.
BMC Nephrol ; 20(1): 431, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752737

RESUMO

BACKGROUND: Chronic kidney disease (CKD), including nephrotic syndrome, is a major cause of cardiovascular morbidity and mortality. The literature indicates that CKD is associated with profound lipid disorders due to the dysregulation of lipoprotein metabolism which progresses kidney disease. The objective of this study is to evaluate the protective effects of curcumin on dyslipidaemia associated with adenine-induced chronic kidney disease in rats. METHODS: Male SD rats (n = 29) were divided into 5 groups for 24 days: normal control (n = 5, normal diet), CKD control (n = 6, 0.75% w/w adenine-supplemented diet), CUR 50 (n = 6, 50 mg/kg/day curcumin + 0.75% w/w adenine-supplemented diet), CUR 100 (n = 6, 100 mg/kg/day curcumin + 0.75% w/w adenine-supplemented diet), and CUR 150 (n = 6, 150 mg/kg/day curcumin + 0.75% w/w adenine-supplemented diet). The serum and tissue lipid profile, as well as the kidney function test, were measured using commercial diagnostic kits. RESULTS: The marked rise in total cholesterol, low-density lipoprotein (LDL) cholesterol, very low-density lipoprotein (VLDL) cholesterol, triglycerides and free fatty acids in serum, as well as hepatic cholesterol, triglyceride and free fatty acids of CKD control rats were significantly protected by curcumin co-treatment (at the dose of 50, 100 and 150 mg/kg). Furthermore, curcumin significantly increased the serum high-density lipoprotein (HDL) cholesterol compared to the CKD control rats but did not attenuate the CKD-induced weight retardation. Mathematical computational analysis revealed that curcumin significantly reduced indicators for the risk of atherosclerotic lesions (atherogenic index) and coronary atherogenesis (coronary risk index). In addition, curcumin improved kidney function as shown by the reduction in proteinuria and improvement in creatinine clearance. CONCLUSION: The results provide new scientific evidence for the use of curcumin in CKD-associated dyslipidaemia and substantiates the traditional use of curcumin in preventing kidney damage.


Assuntos
Curcumina/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Substâncias Protetoras/farmacologia , Insuficiência Renal Crônica/tratamento farmacológico , Adenina/administração & dosagem , Animais , Peso Corporal/efeitos dos fármacos , Colesterol/metabolismo , HDL-Colesterol/sangue , LDL-Colesterol/metabolismo , VLDL-Colesterol/metabolismo , Creatinina/sangue , Creatinina/urina , Ingestão de Líquidos , Ingestão de Alimentos , Ácidos Graxos não Esterificados/metabolismo , Testes de Função Renal , Masculino , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/induzido quimicamente , Triglicerídeos/metabolismo
4.
BMC Complement Altern Med ; 18(1): 13, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29334926

RESUMO

BACKGROUND: Fructose-mediated protein glycation (fructation) has been linked to an increase in diabetic and cardiovascular complications due to over consumption of high-fructose containing diets in recent times. The objective of the present study is to evaluate the protective effect of (R)-α-lipoic acid (ALA) against fructose-induced myoglobin fructation and the formation of advanced glycation end products (AGEs) in vitro. METHODS: The anti-glycation activity of ALA was determined using the formation of AGEs fluorescence intensity, iron released from the heme moiety of myoglobin and the level of fructosamine. The fructation-induced myoglobin oxidation was examined using the level of protein carbonyl content and thiol group estimation. RESULTS: The results showed that co-incubation of myoglobin (1 mg/mL), fructose (1 M) and ALA (1, 2 and 4 mM) significantly inhibited the formation of AGEs during the 30 day study period. ALA markedly decreased the levels of fructosamine, which is directly associated with the reduction of AGEs formation. Furthermore, ALA significantly reduced free iron release from myoglobin which is attributed to the protection of myoglobin from fructose-induced glycation. The results also demonstrated a significant protective effect of ALA on myoglobin oxidative damages, as seen from decreased protein carbonyl content and increased protein thiols. CONCLUSION: These findings provide new insights into the anti-glycation properties of ALA and emphasize that ALA supplementation is beneficial in the prevention of AGEs-mediated diabetic and cardiovascular complications.


Assuntos
Frutose/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação/efeitos dos fármacos , Mioglobina/metabolismo , Ácido Tióctico/farmacologia , Animais , Produtos Finais de Glicação Avançada/análise , Mioglobina/análise , Mioglobina/química
5.
J Sci Food Agric ; 98(13): 4793-4806, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29656381

RESUMO

Cowpea (Vigna unguiculata) is a legume consumed as a high-quality plant protein source in many parts of the world. High protein and carbohydrate contents with a relatively low fat content and a complementary amino acid pattern to that of cereal grains make cowpea an important nutritional food in the human diet. Cowpea has gained more attention recently from consumers and researchers worldwide as a result of its exerted health beneficial properties, including anti-diabetic, anti-cancer, anti-hyperlipidemic, anti-inflammatory and anti-hypertensive properties. Among the mechanisms that have been proposed in the prevention of chronic diseases, the most proven are attributed to the presence of compounds such as soluble and insoluble dietary fiber, phytochemicals, and proteins and peptides in cowpea. However, studies on the anti-cancer and anti-inflammatory properties of cowpea have produced conflicting results. Some studies support a protective effect of cowpea on the progression of cancer and inflammation, whereas others did not reveal any. Because there are only a few studies addressing health-related effects of cowpea consumption, further studies in this area are suggested. In addition, despite the reported favorable effects of cowpea on diabetes, hyperlipidemia and hypertension, a long-term epidemiological study investigating the association between cowpea consumption and diabetes, cardiovascular disease and cancer is also recommended. © 2018 Society of Chemical Industry.


Assuntos
Vigna/química , Vigna/metabolismo , Animais , Dieta Saudável , Humanos , Valor Nutritivo , Compostos Fitoquímicos/química , Compostos Fitoquímicos/metabolismo , Sementes/metabolismo
6.
J Pharm Pharm Sci ; 18(4): 424-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26626244

RESUMO

PURPOSE: Circulating microparticles have been highlighted as biomarkers of cardiovascular disease state and progression. The aim of this study was to evaluate the effects of curcumin on microparticle release from endothelial cells undergoing TNF-induced cell activation and apoptosis. METHODS: This study evaluated the effects of curcumin on microparticle release, cytotoxicity, apoptosis, cell adhesion molecule expression and monocyte adhesion in EAhy926 human endothelial cells. RESULTS: The results showed that the numbers of microparticles were increased by tumour necrosis factor (TNF) or the combination of TNF and cycloheximide (CHX). Curcumin attenuated microparticle release caused by TNF or TNF plus CHX treatments. The pretreatment by curcumin not only negated the accelerated cell death and apoptosis caused by TNF and CHX, but also diminished TNF-induced cell activation, as assessed by reduced surface expression of intercellular adhesion molecule 1, and adhesion of monocytes to endothelial monolayers. CONCLUSION: Curcumin reduced microparticle release from endothelial cells undergoing cell activation and apoptosis, which supports its protective role in TNF-associated endothelial dysfunction, and highlights its potential use as a nutraceutical agent for vascular inflammatory diseases. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Curcumina/farmacologia , Células Endoteliais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/administração & dosagem , Anexina A5/química , Apoptose/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Células Endoteliais/metabolismo , Humanos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo
7.
Bioorg Med Chem ; 21(3): 766-78, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23265844

RESUMO

Twenty three dual PPARα and γ molecules of natural product origin, previously reported by our group, were further investigated for pan PPAR transactivation against PPARδ. The in vitro cell toxicity profile, as well as, in silico study of the most active molecules within this new class of pan PPAR agonists are also described. 3',5' Dimethoxy-7 hydroxyisoflavone 6, Ψ-baptigenin 7, 4' fluoro-7 hydroxyisoflavone 8, and 3' methoxy-7 hydroxyisoflavone 9 were identified as the most potent molecules studied within the set compared to the commercially available pan PPAR agonist, bezafibrate 1. These novel active molecules may thus be useful as future leads in PPAR-related disorders, including type II diabetes mellitus and metabolic syndrome.


Assuntos
Descoberta de Drogas , Isoflavonas/farmacologia , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Isoflavonas/síntese química , Isoflavonas/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
8.
J Pharm Pharm Sci ; 16(2): 342-51, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23958203

RESUMO

PURPOSE: Fatty liver disease, a hepatic manifestation of metabolic syndrome, is one of the major causes of chronic liver diseases. Epidemiological studies suggest that regular light-to-moderate ethanol consumption lowers the risk of developing metabolic disorders including dislipidemia, insulin resistance, type 2 diabetes and fatty liver disease. However, the mechanism(s) of the protective effect of light-to-moderate ethanol consumption on the liver remains unknown. METHODS: In the present study, we investigated the effects of light (6%, 0.94 g/kg/day) and moderate (12%, 1.88 g/kg/day) ethanol feeding in rats for 3 weeks on the circulating and hepatic biochemical profiles and on the hepatic protein expression and phosphorylation status of adenosine monophosphate-activated protein kinase-α (AMPK-α) and other down-stream targets of this enzyme including sterol regulatory element-binding protein-1 (SREBP-1), SREBP cleavage-activating protein (SCAP) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase). RESULTS: Despite no significant difference in food-intake among the groups, light ethanol treatment significantly increased the body weight compared to control rats. Serum glucose, insulin, total cholesterol, triglycerides, phospholipids and hepatic cholesterol and triglycerides were not significantly different among the groups. However, serum free fatty acids were significantly reduced with light ethanol treatment. Both light and moderate ethanol treatment significantly increased the hepatic levels of phosphorylated AMPK-α protein and this was associated with significant reduction of SREBP-1 protein expression, suggesting an enhanced fatty acid oxidation. In addition, light ethanol treatment significantly decreased the SCAP protein expression in the liver. However, liver HMG-CoA protein expression was not significantly different with ethanol consumption. CONCLUSION: Chronic light-to-moderate ethanol consumption increased AMPK activation which was associated with decreased expression of SREBP-1 and SCAP in the liver. Thus, our studies provide mechanistic evidence for the earlier epidemiological studies that indicate light-to-moderate ethanol intake lowers the risk of development of fatty liver disease and other metabolic disorders. Our studies demonstrate that the protective effects of light-to-moderate ethanol arise at least in part by increased phosphorylation of AMPK-α and decreased SREBP-1 expression in the liver. Further studies are warranted to determine the effects of light-to-moderate ethanol on intracellular up-stream and down-stream targets of AMPK and also on the implications of light-to-moderate ethanol in protecting non-alcoholic fatty liver disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Etanol/administração & dosagem , Fígado/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Hidroximetilglutaril-CoA Redutases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Ratos , Ratos Sprague-Dawley
9.
Phytother Res ; 27(11): 1614-20, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23280757

RESUMO

Pomegranate has been documented for the management of diabetes in Unani and Chinese medicine. This study compared the effects of the extracts of different pomegranate parts, including juice, peels, seeds and flowers, on carbohydrate digestive enzymes (α-amylase and α-glucosidase) in vitro. The methanolic flower extract inhibited α-amylase and α-glucosidase, while the methanolic peel extract inhibited α-glucosidase selectively. The most active flower extract was subjected to water-ethyl acetate partition. The ethyl acetate fraction was more potent than the water fraction in inhibiting both enzymes. Gallic acid and ellagic acid also showed selective inhibition against α-glucosidase, and their presence in the ethyl acetate fraction was confirmed by HPLC-DAD and HPLC-HESI-MS. Our findings suggest that the inhibition of carbohydrate digestive enzymes and their phenolic content may contribute to the anti-hyperglycaemic effects of pomegranate flower and peel, and support their claims in diabetes.


Assuntos
Inibidores Enzimáticos/farmacologia , Inibidores de Glicosídeo Hidrolases , Lythraceae/química , Extratos Vegetais/farmacologia , alfa-Amilases/antagonistas & inibidores , Animais , Ácido Elágico/farmacologia , Inibidores Enzimáticos/química , Flores/química , Frutas/química , Ácido Gálico/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Extratos Vegetais/química , Ratos , Sementes/química , Suínos
10.
Toxicol In Vitro ; 92: 105660, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37591407

RESUMO

Airway remodelling occurs in chronic respiratory diseases (CRDs) such as asthma and chronic obstructive pulmonary disease (COPD). It is characterized by aberrant activation of epithelial reparation, excessive extracellular matrix (ECM) deposition, epithelial-to-mesenchymal transition (EMT), and airway obstruction. The master regulator is Transforming Growth Factor-ß (TGF-ß), which activates tissue repair, release of growth factors, EMT, increased cell proliferation, and reduced nitric oxide (NO) secretion. Due to its fundamental role in remodelling, TGF-ß is an emerging target in the treatment of CRDs. Berberine is a benzylisoquinoline alkaloid with antioxidant, anti-inflammatory, and anti-fibrotic activities whose clinical application is hampered by poor permeability. To overcome these limitations, in this study, berberine was encapsulated in monoolein-based liquid crystalline nanoparticles (BM-LCNs). The potential of BM-LCNs in inhibiting TGF-ß-induced remodelling features in human bronchial epithelial cells (BEAS-2B) was tested. BM-LCNs significantly inhibited TGF-ß-induced migration, reducing the levels of proteins upregulated by TGF-ß including endoglin, thrombospondin-1, basic fibroblast growth factor, vascular-endothelial growth factor, and myeloperoxidase, and increasing the levels of cystatin C, a protein whose expression was downregulated by TGF-ß. Furthermore, BM-LCNs restored baseline NO levels downregulated by TGF-ß. The results prove the in vitro therapeutic efficacy of BM-LCNs in counteracting TGF-ß-induced remodelling features. This study supports the suitability of berberine-loaded drug delivery systems to counteract airway remodelling, with potential application as a treatment strategy against CRDs.


Assuntos
Berberina , Humanos , Berberina/farmacologia , Remodelação das Vias Aéreas , Antioxidantes , Proliferação de Células , Células Epiteliais
11.
Cell Physiol Biochem ; 30(3): 805-14, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22868254

RESUMO

Disruption to the vascular homoeostasis is detrimental in vascular diseases. This study examined how the combination of homocysteine, adenosine and tumor necrosis factor-alpha (TNF-α) influenced endothelial cell survival. In cultured human-derived cardiovascular (EA.hy926) and cerebrovascular (HBEC-5i) endothelial cells, cell death events were initiated by TNF-α (0.1-10 ng/mL) only when both homocysteine (0.5 mM) and adenosine (0.5 mM) were present. The accelerated cell death events induced by the combination were triggered through excessive apoptosis. This was evident by membrane phospholipid phosphatidylserine externalisation, cell shrinkage and DNA fragmentation, as well as an increase in the expressions and occurrence of active caspase-3 and cleaved poly(ADP-ribose) polymerase (PARP) positive cells. Collectively, homocysteine, adenosine and TNF-α are interrelated in the survival of endothelial cells, and this co-existence should be considered in future drug development for cardiovascular and cerebrovascular diseases.


Assuntos
Adenosina/toxicidade , Apoptose/efeitos dos fármacos , Homocisteína/toxicidade , Fator de Necrose Tumoral alfa/toxicidade , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo
12.
Curr Pharm Des ; 28(23): 1911-1925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345991

RESUMO

BACKGROUND AND AIMS: Curcumin is one of the most commonly used indigenous molecules endowed with various shielding functionalities that protect the liver. In the present research, we aimed to investigate the effects of curcumin on metabolic factors and body mass index (BMI) in patients with non-alcoholic fatty liver disease (NAFLD) using a meta-analysis of randomized, controlled trials. METHODS: Online databases PubMed, Embase, Web of Science, and Science Direct were searched until April 2021 to identify eligible articles. Fourteen trials were included. RESULTS: The results showed that curcumin consumption can significantly reduce AST (-0.35, (-0.57 to -0.14)), total cholesterol (-0.81, (-1.34 to -0.27)), TG (-0.49, (-0.71 to -0.27)), and FBS (-0.28, (-0.46 to -0.09)) in patients with NAFLD. However, the improvements in ALT (-0.29, (-0.58 to 0.00)), LDL (-0.48, (-0.97 to 0.01)), HDL (0.03, (-0.38 to 0.44)), and BMI (-0.13, (-0.29 to 0.02)) were not statistically significant. Furthermore, the findings revealed that the optimal dose and duration of curcumin consumption for patients with NAFLD is <500 mg/d for less than 10 weeks. CONCLUSION: The present study suggests that consuming curcumin can improve liver enzymes, lipid profile, FBS, and BMI in patients with NAFLD. Moreover, curcumin supplementation may provide beneficial effects on metabolic biomarkers and body weight if used at the appropriate dose and duration. Further RCTs are required to confirm our findings.


Assuntos
Curcumina , Hepatopatia Gordurosa não Alcoólica , Biomarcadores , Índice de Massa Corporal , Curcumina/farmacologia , Curcumina/uso terapêutico , Suplementos Nutricionais , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
13.
Front Pharmacol ; 13: 857864, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450034

RESUMO

Background: Polysaccharide peptide (PSP) extract of Coriolus versicolor (L.) Quél. (1886) (Trametes; Polyporaceae) is increasingly used in cancer to support the immune system. However, its interaction with tamoxifen is unknown. Aim of the study: To investigate the effect of a PSP extract on the pharmacokinetics, biochemical parameters, and depletion of tamoxifen. Methods: The pharmacokinetic and biochemical parameters of tamoxifen (20 mg/mL oral single dose and repeated dosing for 12 days) was investigated in female Sprague Dawley rats with or without PSP (340 mg/kg orally for 7 days) (n = 5 per group). Tamoxifen (5 µM) depletion rate with PSP (10-100 µg/mL) was measured in female rat hepatic microsomes in vitro. Results: Compared to tamoxifen alone, the time to reach maximum concentration (Tmax) significantly increased by 228% (4.15 ± 1.15 versus 13.6 ± 2.71 h) in the single tamoxifen dose with PSP and 93% (6 ± 2.17 versus 11.6 ± 0.4 h) in the repeated tamoxifen dosing with PSP (p < 0.05). No significant changes in the area-under-curve and maximum concentration were observed in the single dose and repeated tamoxifen dosing plus PSP compared to tamoxifen alone. Pharmacodynamically, the repeated tamoxifen dosing with PSP maintained 19 out of 23 hepatic, renal and cardiac biochemical serum parameters in rats compared to untreated rats (p > 0.05). PSP extract did not significantly alter in vitro intrinsic clearance of tamoxifen compared to tamoxifen control. Conclusion: With the increased use of PSP as an adjunct therapy, this study highlights the importance of clinician's knowledge of its interaction with tamoxifen to avoid compromising clinical actions and enhancing clinical therapy.

14.
Antioxidants (Basel) ; 11(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35624737

RESUMO

Cigarette smoke is considered a primary risk factor for chronic obstructive pulmonary disease. Numerous toxicants present in cigarette smoke are known to induce oxidative stress and airway inflammation that further exacerbate disease progression. Generally, the broncho-epithelial cells and alveolar macrophages exposed to cigarette smoke release massive amounts of oxidative stress and inflammation mediators. Chronic exposure of cigarette smoke leads to premature senescence of airway epithelial cells. This impairs cellular function and ultimately leads to the progression of chronic lung diseases. Therefore, an ideal therapeutic candidate should prevent disease progression by controlling oxidative stress, inflammation, and senescence during the initial stage of damage. In our study, we explored if berberine (an alkaloid)-loaded liquid crystalline nanoparticles (berberine-LCNs)-based treatment to human broncho-epithelial cells and macrophage inhibits oxidative stress, inflammation, and senescence induced by cigarette-smoke extract. The developed berberine-LCNs were found to have favourable physiochemical parameters, such as high entrapment efficiency and sustained in vitro release. The cellular-assay observations revealed that berberine-LCNs showed potent antioxidant activity by suppressing the generation of reactive oxygen species in both broncho-epithelial cells (16HBE) and macrophages (RAW264.7), and modulating the genes involved in inflammation and oxidative stress. Similarly, in 16HBE cells, berberine-LCNs inhibited the cigarette smoke-induced senescence as revealed by X-gal staining, gene expression of CDKN1A (p21), and immunofluorescent staining of p21. Further in-depth mechanistic investigations into antioxidative, anti-inflammatory, and antisenescence research will diversify the current findings of berberine as a promising therapeutic approach for inflammatory lung diseases caused by cigarette smoking.

15.
Chem Biol Interact ; 368: 110223, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283466

RESUMO

Synbiotics, are a combination of probiotics and prebiotics. They play an important role in metabolizing different nutritional substrates and thus helps in the maintenance of human health. Any disbalance in the gut microflora, known as dysbiosis, is known to lead to a number of diseased conditions. It can be reverted by the administration of synbiotics. Present review highlights various mechanistic pathways through which synbiotics act as therapeutics. The dual role of synbiotics as nutraceutical and excipient in developing oral formulations are entailed with case studies. The findings entailed that there exist numerous studies on prebiotics as well as probiotics have been carried out to show their effects in several diseases. However, the concept of combining together them for prevention and treatment of various pathological conditions accruing from dysbiosis is relatively new. Synbiotics, however, face challenge of low stability during their sojourn in the GIT, which is generally overcome by various encapsulation techniques. Various studies also showed potential role of synbiotics in drug delivery. However, it is an emerging area and lacks clinical correlation. It is important to focus on clinical trials of formulations wherein synbiotics have been used as therapeutic moiety as well as pharmaceutical carrier for treating various diseases.


Assuntos
Probióticos , Simbióticos , Humanos , Prebióticos , Disbiose , Excipientes , Probióticos/farmacologia , Probióticos/uso terapêutico
16.
Curr Mol Pharmacol ; 14(3): 321-332, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33494692

RESUMO

Hypoxia is an integral part of the tumor microenvironment, caused primarily due to rapidly multiplying tumor cells and a lack of proper blood supply. Among the major hypoxic pathways, HIF-1 transcription factor activation is one of the widely investigated pathways in the hypoxic tumor microenvironment (TME). HIF-1 is known to activate several adaptive reactions in response to oxygen deficiency in tumor cells. HIF-1 has two subunits, HIF-1ß (constitutive) and HIF-1α (inducible). The HIF-1α expression is largely regulated via various cytokines (through PI3K-ACT-mTOR signals), which involves the cascading of several growth factors and oncogenic cascades. These events lead to the loss of cellular tumor suppressant activity through changes in the level of oxygen via oxygen-dependent and oxygen-independent pathways. The significant and crucial role of HIF in cancer progression and its underlying mechanisms have gained much attention lately among the translational researchers in the fields of cancer and biological sciences, which have enabled them to correlate these mechanisms with various other disease modalities. In the present review, we have summarized the key findings related to the role of HIF in the progression of tumors.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Hipóxia Celular/fisiologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/patologia , Oxigênio/metabolismo , Microambiente Tumoral
18.
Biomed Res Int ; 2019: 8714363, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31828139

RESUMO

OBJECTIVE: Chronic kidney disease (CKD), including nephrotic syndrome, is a major cause of cardiovascular morbidity and mortality. The literature indicates that CKD is associated with profound lipid disorders largely due to the dysregulation of lipoprotein metabolism which further aggravates the progression of kidney disease. The present study sought to determine the efficacy of atorvastatin treatment on hepatic lipid metabolism and renal tissue damage in CKD rats. METHODS: Serum, hepatic and faecal lipid contents and the expression and enzyme activity of molecules involved in cholesterol and triglyceride metabolism, along with kidney function, were determined in untreated adenine-induced CKD, atorvastatin-treated CKD (10 mg/kg/day oral for 24 days) and control rats. KEY FINDINGS: CKD resulted in metabolic dyslipidaemia, renal insufficiency, hepatic lipid accumulation, upregulation of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, acyl-CoA cholesterol acyltransferase-2 (ACAT2) and the downregulation of LDL receptor protein, VLDL receptor, hepatic lipase, lipoprotein lipase (LPL), lecithin-cholesterol acyltransferase (LCAT) and scavenger receptor class B type 1 (SR-B1). CKD also resulted in increased enzymatic activity of HMG-CoA reductase and ACAT2 together with decreased enzyme activity of lipase and LCAT. Atorvastatin therapy attenuated dyslipidaemia, renal insufficiency, reduced hepatic lipids, HMG-CoA reductase and ACAT2 protein abundance and raised LDL receptor and lipase protein expression. Atorvastatin therapy decreased the enzymatic activity of HMG-CoA reductase and increased enzymatic activity of lipase and LCAT. CONCLUSIONS: Atorvastatin improved hepatic tissue lipid metabolism and renal function in adenine-induced CKD rats.


Assuntos
Atorvastatina/farmacologia , Rim/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Insuficiência Renal Crônica/metabolismo , Adenina/efeitos adversos , Animais , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/induzido quimicamente
19.
Int J Hypertens ; 2019: 2907675, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737360

RESUMO

[This corrects the article DOI: 10.1155/2019/6709817.].

20.
J Environ Pathol Toxicol Oncol ; 38(3): 205-216, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31679308

RESUMO

Artemisia vulgaris is a traditional Chinese herb believed to have a wide range of healing properties; it is traditionally used to treat numerous health ailments. The plant is commonly called mugwort or riverside wormwood. The plant is edible, and in addition to its medicinal properties, it is also used as a culinary herb in Asian cooking in the form of a vegetable or in soup. The plant has garnered the attention of researchers in the past few decades, and several research studies have investigated its biological effects, including antioxidant, anti-inflammatory, anticancer, hypolipidemic, and antimicrobial properties. In this review, various studies on these biological effects are discussed along with the tests conducted, compounds involved, and proposed mechanisms of action. This review will be of interest to the researchers working in the field of herbal medicine, pharmacology, medical sciences, and immunology.


Assuntos
Artemisia/química , Fitoterapia , Extratos Vegetais/farmacologia , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Hipolipemiantes/farmacologia , Plantas Medicinais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA