Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Clin Microbiol Antimicrob ; 23(1): 64, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026348

RESUMO

BACKGROUND: Infectious keratitis, a significant contributor to blindness, with fungal keratitis accounting for nearly half of cases, poses a formidable diagnostic and therapeutic challenge due to its delayed clinical presentation, prolonged culture times, and the limited availability of effective antifungal medications. Furthermore, infections caused by rare fungal strains warrant equal attention in the management of this condition. CASE PRESENTATION: A case of fungal keratitis was presented, where corneal scraping material culture yielded pink colonies. Lactophenol cotton blue staining revealed distinctive spore formation consistent with the Fusarium species. Further analysis using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) identified the causative agent as Fusarium proliferatum. However, definitive diagnosis of Pseudonectria foliicola infection was confirmed through ITS sequencing. The patient's recovery was achieved with a combination therapy of voriconazole eye drops and itraconazole systemic treatment. CONCLUSION: Pseudonectria foliicola is a plant pathogenic bacterium that has never been reported in human infections before. Therefore, ophthalmologists should consider Pseudonectria foliicola as a possible cause of fungal keratitis, as early identification and timely treatment can help improve vision in most eyes.


Assuntos
Antifúngicos , Infecções Oculares Fúngicas , Fusarium , Ceratite , Voriconazol , Humanos , Ceratite/microbiologia , Ceratite/tratamento farmacológico , Ceratite/diagnóstico , Antifúngicos/uso terapêutico , Infecções Oculares Fúngicas/microbiologia , Infecções Oculares Fúngicas/tratamento farmacológico , Infecções Oculares Fúngicas/diagnóstico , Voriconazol/uso terapêutico , Fusarium/isolamento & purificação , Fusarium/efeitos dos fármacos , Fusarium/patogenicidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Itraconazol/uso terapêutico , Fusariose/tratamento farmacológico , Fusariose/microbiologia , Fusariose/diagnóstico , Masculino , Córnea/microbiologia , Córnea/patologia , Feminino , Pessoa de Meia-Idade
2.
Mol Phylogenet Evol ; 186: 107842, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37321361

RESUMO

Distinct hosts have been hypothesized to possess the potential for affecting species differentiation and genome evolution of parasitic organisms. However, what host shift history is experienced by the closely related parasites and whether disparate evolution of their genomes occur remain largely unknown. Here, we screened horizontal gene transfer (HGT) events in a pair of sister species of holoparasitic Boschniakia (Orobanchaceae) having obligate hosts from distinct families to recall the former host-parasite associations and performed a comparative analysis to investigate the difference of their organelle genomes. Except those from the current hosts (Ericaceae and Betulaceae), we identified a number of HGTs from Rosaceae supporting the occurrence of unexpected ancient host shifts. Different hosts transfer functional genes which changed nuclear genomes of this sister species. Likewise, different donors transferred sequences to their mitogenomes, which vary in size due to foreign and repetitive elements rather than other factors found in other parasites. The plastomes are both severely reduced, and the degree of difference in reduction syndrome reaches the intergeneric level. Our findings provide new insights into the genome evolution of parasites adapting to different hosts and extend the mechanism of host shift promoting species differentiation to parasitic plant lineages.


Assuntos
Genomas de Plastídeos , Orobanchaceae , Humanos , Filogenia , Orobanchaceae/genética , Genes de Plantas , Sequências Repetitivas de Ácido Nucleico , Transferência Genética Horizontal
3.
BMC Plant Biol ; 22(1): 444, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36114450

RESUMO

BACKGROUND: Orobanchaceae is the only flowering plant family with species from free-living nonparasite, hemi-parasite to holoparasite, making it an ideal system for studying the evolution of parasitism. However, both plastid and mitochondrial genome have been sequenced in only few parasitic species in Orobanchaceae. Therefore, further comparative study is wanted to investigate the impact of holoparasitism on organelle genomes evolution between close relatives. Here, we sequenced organelle genomes and transcriptome of holoparasitic Christisonia kwangtungensis and compared it with its closely related groups to analyze similarities and differences in adaption strategies to the holoparasitic lifestyle. RESULTS: The plastid genome of C. kwangtungensis has undergone extensive pseudogenization and gene loss, but its reduction pattern is different from that of Aeginetia indica, the close relative of C. kwangtungensis. Similarly, the gene expression detected in the photosynthetic pathway of these two genera is different. In Orobanchaceae, holoparasites in Buchnereae have more plastid gene loss than Rhinantheae, which reflects their longer history of holoparasitism. Distinct from severe degradation of the plastome, protein-coding genes in the mitochondrial genome of C. kwangtungensis are relatively conserved. Interestingly, besides intracellularly transferred genes which are still retained in its plastid genome, we also found several horizontally transferred genes of plastid origin from diverse donors other than their current hosts in the mitochondrial genome, which probably indicate historical hosts. CONCLUSION: Even though C. kwangtungensis and A. indica are closely related and share severe degradation of plastome, they adapt organelle genomes to the parasitic lifestyle in different ways. The difference between their gene loss and gene expression shows they ultimately lost photosynthetic genes but through different pathways. Our study exemplifies how parasites part company after achieving holoparasitism.


Assuntos
Genoma Mitocondrial , Genomas de Plastídeos , Orobanchaceae , Genoma Mitocondrial/genética , Genomas de Plastídeos/genética , Orobanchaceae/genética , Plastídeos/genética , Análise de Sequência de DNA
4.
Exp Cell Res ; 407(2): 112826, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34508742

RESUMO

INTS6 (integrator complex subunit 6) has been reported as a tumor suppressor in many cancers. However, the expression and biological function of INTS6 in colorectal cancer (CRC) has not been investigated yet. In this study, we found that INTS6 expression was significantly increased in CRC tissues when compared with normal tissues and was associated with poor prognosis. Downregulation of INTS6 induced G1/S-phase cell cycle arrest, and markedly suppressed the growth of CRC cells and the derived tumors, while overexpression of INTS6 showed opposite effect. Mechanism study revealed that INTS6 increased the levels of phosphorylated AKT (p-AKT) and ERK (p-ERK), and the growth-promoting effect of INTS6 was inhibited by AKT and ERK inhibitors. Besides, INTS6 also affected the expression of two targets of PI3K/AKT and MAPK signaling, c-Myc and CDK2, which contributed to cell cycle alteration. Altogether, the present study has revealed the oncogenic role of INTS6 in CRC, providing a novel therapeutic target for this malignant cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Masculino , Camundongos , Camundongos Nus , Fosfatidilinositol 3-Quinases/genética , Prognóstico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas de Ligação a RNA/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
EMBO Rep ; 20(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30467237

RESUMO

CDC14A codes for a conserved proline-directed phosphatase, and mutations in the gene are associated with autosomal-recessive severe to profound deafness, due to defective kinocilia. A role of CDC14A in cilia formation has also been described in other organisms. However, how human CDC14A impacts on cilia formation remains unclear. Here, we show that human RPE1 hCDC14APD cells, encoding a phosphatase dead version of hCDC14A, have longer cilia than wild-type cells, while hCDC14A overexpression reduces cilia formation. Phospho-proteome analysis of ciliated RPE1 cells identified actin-associated and microtubule binding proteins regulating cilia length as hCDC14A substrates, including the actin-binding protein drebrin. Indeed, we find that hCDC14A counteracts the CDK5-dependent phosphorylation of drebrin at S142 during ciliogenesis. Further, we show that drebrin and hCDC14A regulate the recruitment of the actin organizer Arp2 to centrosomes. In addition, during ciliogenesis hCDC14A also regulates endocytosis and targeting of myosin Va vesicles to the basal body in a drebrin-independent manner, indicating that it impacts primary cilia formation in a multilayered manner.


Assuntos
Proteína 2 Relacionada a Actina/genética , Cílios/genética , Neuropeptídeos/genética , Monoéster Fosfórico Hidrolases/genética , Actinas/genética , Linhagem Celular , Movimento Celular/genética , Centrossomo/metabolismo , Cílios/metabolismo , Quinase 5 Dependente de Ciclina/genética , Endocitose/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Microtúbulos/genética , Mutação , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Fosforilação , Ligação Proteica , Proteínas Tirosina Fosfatases , Proteoma/genética
6.
Carcinogenesis ; 41(9): 1263-1272, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31783401

RESUMO

Metastasis-associated protein 1 (MTA1) is upregulated in multiple malignancies and promotes cancer proliferation and metastasis, but whether and how MTA1 promotes esophageal squamous cell carcinoma (ESCC) tumorigenesis remain unanswered. Here, we established an ESCC model in MTA1 transgenic mice induced by the chemical carcinogen 4-nitroquinoline 1-oxide (4-NQO) and found that MTA1 promotes ESCC tumorigenesis in mice. MTA1 overexpression was observed in ESCC cells and clinical ESCC samples. Overexpressed MTA1 increased colony formation and the invasiveness and migration of ESCC cells, whereas knock down of MTA1 in ESCC cells significantly decreased colony formation, invasion and migration in vitro and inhibited the growth of xenograft tumors in vivo. RNA sequencing (RNA-seq) analysis combined with western blot assays revealed that MTA1 promotes carcinogenesis by enhancing MEK/ERK/p90RSK signaling. The phosphorylation of MEK, ERK and their downstream target p90RSK was significantly decreased after MTA1 knockdown in ESCC cells and was increased in MTA1-overexpressing cells. Moreover, colony formation, invasion and migration potential were dramatically suppressed when cells overexpressing MTA1 were treated with MEK (PD0325901) or ERK (SCH772948) inhibitors. In conclusion, MTA1 plays a pivotal oncogenic role in ESCC tumorigenesis and development through activating the MEK/ERK/p90RSK pathway.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Sistema de Sinalização das MAP Quinases , Proteínas Repressoras/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transativadores/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Modelos Animais de Doenças , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Proteínas Repressoras/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Transdução de Sinais , Transativadores/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
BMC Genomics ; 21(Suppl 10): 697, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208098

RESUMO

BACKGROUND: Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao is one of the most common herbs widely used in South and East Asia, to enhance people's health and reinforce vital energy. Despite its prevalence, however, the knowledge about phytochemical compositions and metabolite biosynthesis in Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao is very limited. RESULTS: An integrated metabolomics and transcriptomics analysis using state-of-the-art UPLC-Q-Orbitrap mass spectrometer and advanced bioinformatics pipeline were conducted to study global metabolic profiles and phytochemical ingredients/biosynthesis in Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao. A total of 5435 metabolites were detected, from which 2190 were annotated, representing an order of magnitude increase over previously known. Metabolic profiling of Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao tissues found contents and synthetic enzymes for phytochemicals were significantly higher in leaf and stem in general, whereas the contents of the main bioactive ingredients were significantly enriched in root, underlying the value of root in herbal remedies. Using integrated metabolomics and transcriptomics data, we illustrated the complete pathways of phenylpropanoid biosynthesis, flavonoid biosynthesis, and isoflavonoid biosynthesis, in which some were first reported in the herb. More importantly, we discovered novel flavonoid derivatives using informatics method for neutral loss scan, in addition to inferring their likely synthesis pathways in Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao. CONCLUSIONS: The current study represents the most comprehensive metabolomics and transcriptomics analysis on traditional herb Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao. We demonstrated our integrated metabolomics and transcriptomics approach offers great potentials in discovering novel metabolite structure and associated synthesis pathways. This study provides novel insights into the phytochemical ingredients, metabolite biosynthesis, and complex metabolic network in herbs, highlighting the rich natural resource and nutritional value of traditional herbal plants.


Assuntos
Astragalus propinquus , Metaboloma , Astragalus propinquus/genética , Biologia Computacional , Humanos , Metabolômica , Compostos Fitoquímicos , Transcriptoma
8.
Proc Natl Acad Sci U S A ; 114(20): 5201-5206, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28465438

RESUMO

CDC14 is an essential dual-specificity phosphatase that counteracts CDK1 activity during anaphase to promote mitotic exit in Saccharomyces cerevisiae Surprisingly, human CDC14A is not essential for cell cycle progression. Instead, it regulates cell migration and cell adhesion. Little is known about the substrates of hCDC14A and the counteracting kinases. Here, we combine phospho-proteome profiling and proximity-dependent biotin identification to identify hCDC14A substrates. Among these targets were actin regulators, including the tumor suppressor eplin. hCDC14A counteracts EGF-induced rearrangements of actin cytoskeleton by dephosphorylating eplin at two known extracellular signal-regulated kinase sites, serine 362 and 604. hCDC14APD and eplin knockout cell lines exhibited down-regulation of E-cadherin and a reduction in α/ß-catenin at cell-cell adhesions. Reduction in the levels of hCDC14A and eplin mRNA is frequently associated with colorectal carcinoma and is correlated with poor prognosis. We therefore propose that eplin dephosphorylation by hCDC14A reduces actin dynamics to restrict tumor malignancy.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/fisiologia , Actinas/metabolismo , Caderinas/metabolismo , Adesão Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Movimento Celular/fisiologia , Proteínas do Citoesqueleto/genética , Células HEK293 , Células HeLa , Humanos , Fosforilação , Proteínas Tirosina Fosfatases , beta Catenina/metabolismo
9.
Proc Natl Acad Sci U S A ; 113(4): 990-5, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26747605

RESUMO

Cell adhesion and migration are highly dynamic biological processes that play important roles in organ development and cancer metastasis. Their tight regulation by small GTPases and protein phosphorylation make interrogation of these key processes of great importance. We now show that the conserved dual-specificity phosphatase human cell-division cycle 14A (hCDC14A) associates with the actin cytoskeleton of human cells. To understand hCDC14A function at this location, we manipulated native loci to ablate hCDC14A phosphatase activity (hCDC14A(PD)) in untransformed hTERT-RPE1 and colorectal cancer (HCT116) cell lines and expressed the phosphatase in HeLa FRT T-Rex cells. Ectopic expression of hCDC14A induced stress fiber formation, whereas stress fibers were diminished in hCDC14A(PD) cells. hCDC14A(PD) cells displayed faster cell migration and less adhesion than wild-type controls. hCDC14A colocalized with the hCDC14A substrate kidney- and brain-expressed protein (KIBRA) at the cell leading edge and overexpression of KIBRA was able to reverse the phenotypes of hCDC14A(PD) cells. Finally, we show that ablation of hCDC14A activity increased the aggressive nature of cells in an in vitro tumor formation assay. Consistently, hCDC14A is down-regulated in many tumor tissues and reduced hCDC14A expression is correlated with poorer survival of patients with cancer, to suggest that hCDC14A may directly contribute to the metastatic potential of tumors. Thus, we have uncovered an unanticipated role for hCDC14A in cell migration and adhesion that is clearly distinct from the mitotic and cytokinesis functions of Cdc14/Flp1 in budding and fission yeast.


Assuntos
Movimento Celular , Neoplasias/patologia , Monoéster Fosfórico Hidrolases/fisiologia , Adesão Celular , Células HCT116 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Metástase Neoplásica , Fosfoproteínas/fisiologia , Proteínas Tirosina Fosfatases , Fibras de Estresse/fisiologia
10.
BMC Genomics ; 16: 1082, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26691863

RESUMO

BACKGROUND: Highly efficient genome editing can be achieved through targeting an endonuclease to specific locus of interest. Engineered zinc-finger nuclease (ZFN) and CRISPR-associated protein-9 nuclease (Cas9) offer such an elegant approach for genome editing in vertebrate cells. In this study, we have utilized ZFN and Cas9-catalyzed double strand break followed by homologous recombination-mediated incorporation of premature stop codon and selection marker to target human cell division cycle 14A (hCDC14A) and cell division cycle 14B (hCDC14B) genes. RESULTS: Targeting of the hCDC14A and hCDC14B loci in telomerase immortalized human retinal pigment epithelium (hTERT-RPE1) and human colon cancer (HCT116) cells were confirmed by Southern blot hybridization. Nevertheless, DNA sequence analysis of reverse transcription polymerase chain reaction (RT-PCR) products confirmed that in all the single/double allele ablations, the targeted exon was spliced out. The phenomenon of exon skipping was independent of the genome editing approaches exploited, Cas9 or ZFN. Because the exons had a nucleotide number that could be divided by 3, the reading frame of the exon deletion was maintained. This indicates an exon-skipping event possibly due to the insertion of large DNA fragment (1.7 to 2.5 Kb) within the targeted exons. As a proof-of-principle, we have used gene disruption followed by non-homologous end joining (NHEJ) approach. Small alterations in the exon (one to fifteen bases) were transcribed to mRNA without exon skipping. Furthermore, loxP site-mediated removal of selection markers left a 45 bp scar within the targeted exon that can be traced in mRNA without exon skipping. CONCLUSION: From this study, we conclude that insertion of a large DNA fragment into an exon by genome editing can lead to its skipping from the final transcript. Hence, more cautious approach needs to be taken while designing target sites in such that the possible skipping of targeted exon causes a frame-shift mediated incorporation of pre-mature stop codon. On the other hand, exon skipping may be a useful strategy for the introduction of protein deletions.


Assuntos
Endonucleases/metabolismo , Engenharia Genética/métodos , Mutagênese Insercional , Edição de RNA , Proteínas Associadas a CRISPR/metabolismo , Linhagem Celular , Endonucleases/química , Éxons , Células HCT116 , Humanos , Epitélio Pigmentado da Retina/citologia , Análise de Sequência de DNA , Dedos de Zinco
11.
BMC Genomics ; 16 Suppl 7: S15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26099797

RESUMO

BACKGROUND: Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao (A. mongolicus, family Leguminosae) is one of the most important traditional Chinese herbs. Among many secondary metabolites it produces, the effective bioactive constituents include isoflavonoids and triterpene saponins. The genomic resources regarding the biosynthesis of these metabolites in A. mongolicus are limited. Although roots are the primary material harvested for medical use, the biosynthesis of the bioactive compounds and its regulation in A. mongolicus are not well understood. Therefore, a global transcriptome analysis on A. mongolicus tissues was performed to identify the genes essential for the metabolism and to profile their expression patterns in greater details. RESULTS: RNA-sequencing was performed for three different A. mongolicus tissues: leaf, stem, and root, using the Illumina Hiseq2000 platform. A total of 159.5 million raw sequence reads were generated, and assembled into 186,324 unigenes with an N50 of 1,524bp. Among them, 129,966 unigenes (~69.7%) were annotated using four public databases (Swiss-Prot, TrEMBL, CDD, Pfam), and 90,202, 63,946, and 78,326 unigenes were found to express in leaves, roots, and stems, respectively. A total of 8,025 transcription factors (TFs) were identified, in which the four largest families, bHLH, MYB, C3H, and WRKY, were implicated in regulation of tissue development, metabolisms, stress response, etc. Unigenes associated with secondary metabolism, especially those with isolavonoids and triterpene saponins biosynthesis were characterized and profiled. Most genes involved in the isoflavonoids biosynthesis had the lowest expression in the leaves, and the highest in the stems. For triterpene saponin biosynthesis, we found the genes in MVA and non-MVA pathways were differentially expressed among three examined tissues, indicating the parallel but compartmentally separated biosynthesis pathways of IPP and DMAPP in A. mongolicus. The first committed enzyme in triterpene saponin biosynthesis from A. mongolicus, cycloartenol synthase (AmCAS), which belongs to the oxidosqualene cyclase family, was cloned by us to study the astragalosides biosynthesis. Further co-expression analysis indicated the candidate CYP450s and glycosyltransferases (GTs) in the cascade of triterpene saponins biosynthesis. The presence of the large CYP450 families in A. mongolicus was further compared with those from Medicago truncatula and Arabidopsis thaliana, and the diversity and phylegenetic relationships of the CYP450 families were established. CONCLUSION: A transcriptome study was performed for A. mongolicus tissues to construct and profile their metabolic pathways, especially for the important bioactive molecules. The results revealed a comprehensive profile for metabolic activities among tissues, pointing to the equal importance of leaf, stem, and root in A. mongolicus for the production of bioactive compounds. This work provides valuable resources for bioengineering and in vitro synthesis of the natural compounds for medical research and for potential drug development.


Assuntos
Astragalus propinquus/genética , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Análise de Sequência de RNA/métodos , Astragalus propinquus/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Variação Genética , Isoflavonas/biossíntese , Redes e Vias Metabólicas , Filogenia , Proteínas de Plantas/metabolismo , Saponinas/biossíntese
12.
Protein Expr Purif ; 107: 83-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25462811

RESUMO

Plant cytochrome P450 enzymes play vital roles in the biosynthesis of plant secondary metabolites, including phenylpropanoids and phytoalexins. Isoflavone-2'-hydroxylase (AmI2'H) from Astragalus membranaceus Bge. Var. mongolicus (Bge.) Hsiao is a membrane protein and an eukaryotic cytochrome P450 enzyme involved in isoflavonoid biosynthesis. We cloned the AmI2'H gene by employing RACE methods and modified the gene sequence to facilitate protein expression and increase protein solubility. Two vectors, pET-28a(+) and pCW ori(+), were used to express AmI2'H in Escherichia coli. The expression efficiency and purity of target protein were analyzed and demonstrated that pET-28a(+) vector containing the AmI2'H gene could produce larger amounts of target proteins with higher purity than pCWori(+). The purified proteins were identified as AmI2'H by LC-ESI-MS/MS analysis and their proper folding was assessed by CO difference spectrum.


Assuntos
Astragalus propinquus/enzimologia , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Sequência de Aminoácidos , Astragalus propinquus/química , Astragalus propinquus/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
13.
Front Neurol ; 15: 1330102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715687

RESUMO

Objective: Temporal lobe epilepsy (TLE) is a prevalent refractory partial epilepsy seen in clinical practice, with most cases originating from the hippocampus and being characterized by impaired learning and memory. Oxidative stress plays a direct role in the development of epilepsy and neurodegeneration while promoting cognitive dysfunction. Previous research indicates that benzyl isothiocyanate (BITC) has antioxidative stress properties and contributes to neuroprotection. In this study, we aimed to investigate the neuroprotective effect of BITC on a lithium-pilocarpine-induced temporal lobe epileptic mice model. Methods: We conducted Intellicage learning tests, Morris water maze, open field test, and step-down-type passive avoidance tests, respectively. In addition, body weight and brain-to-body ratio were calculated. Nissl staining, real-time quantitative PCR detection of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1) and NAD(P)H dehydrogenase quinone 1(NQO1) were performed. Content of malondialdehyde (MDA) and activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC) were determined. Results: Our results demonstrate that BITC enhances cognitive function and motor ability in mice, as determined by Intellicage learning tests, Morris water maze, open field test, and step-down-type passive avoidance tests, respectively. Epilepsy leads to the loss of neurons in the CA3 region, while BITC treatment plays a positive role in neuroprotection, especially in the cortex. In comparison to the control group, the EP group exhibited decreased transcription levels of HO-1 and NQO1, alongside reduced GSH-Px activity, while MDA content was elevated. Conversely, the BITC treatment group, when compared to the EP group, showed enhanced transcription levels of Nrf2, HO-1, and NQO1, along with increased GSH-Px activity, and a decrease in MDA content. Conclusion: In summary, our study provides evidence that BITC can improve cognitive impairments in pilocarpine-induced epileptic mice, demonstrating significant antioxidant effects and neuroprotective properties. This highlights its potential as a phytochemical for managing the sequelae of epilepsy.

14.
Sci Adv ; 9(3): eadd6982, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662865

RESUMO

Mitotic perturbations activate the spindle assembly checkpoint (SAC) that keeps cells in prometaphase with high CDK1 activity. Prolonged mitotic arrest is eventually bypassed by gradual cyclin B decline followed by slippage of cells into G1 without chromosome segregation, a process that promotes cell transformation and drug resistance. Hitherto, the cyclin B1 decay is exclusively defined by mechanisms that involve its proteasomal degradation. Here, we report that hyperphosphorylated HIPK2 kinase accumulates in mitotic cells and phosphorylates the Rett syndrome protein MeCP2 at Ser92, a regulation that is counteracted by CDC14B phosphatase. MeCP2S92 phosphorylation leads to the enhanced translation of cyclin B1, which is important for cells with persistent SAC activation to counteract the proteolytic decline of cyclin B1 and therefore to suspend mitotic slippage. Hence, the HIPK2/CDC14B-MeCP2 axis functions as an enhancer of the SAC-induced mitotic block. Collectively, our study revises the prevailing view of how cells confer a sustainable SAC.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Mitose , Pontos de Checagem do Ciclo Celular , Ciclina B1/genética , Ciclina B1/metabolismo , Fosforilação , Fosfatases de Especificidade Dupla/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Transporte/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo
15.
Adv Sci (Weinh) ; 10(25): e2300756, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37442756

RESUMO

Liver metastasis is the most fatal event of colon cancer patients. Warburg effect has been long challenged by the fact of upregulated oxidative phosphorylation (OXPHOS), while its mechanism remains unclear. Here, metastasis-associated antigen 1 (MTA1) is identified as a newly identified adenosine triphosphate (ATP) synthase modulator by interacting with ATP synthase F1 subunit alpha (ATP5A), facilitates colon cancer liver metastasis by driving mitochondrial bioenergetic metabolism reprogramming, enhancing OXPHOS; therefore, modulating ATP synthase activity and downstream mTOR pathways. High-throughput screening of an anticancer drug shows MTA1 knockout increases the sensitivity of colon cancer to mitochondrial bioenergetic metabolism-targeted drugs and mTOR inhibitors. Inhibiting ATP5A enhances the sensitivity of liver-metastasized colon cancer to sirolimus in an MTA1-dependent manner. The therapeutic effects are verified in xenograft models and clinical cases. This research identifies a new modulator of mitochondrial bioenergetic reprogramming in cancer metastasis and reveals a new mechanism on upregulating mitochondrial OXPHOS as the reversal of Warburg effect in cancer metastasis is orchestrated.


Assuntos
Neoplasias do Colo , Neoplasias Hepáticas , Humanos , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Fosforilação Oxidativa , Neoplasias Hepáticas/tratamento farmacológico
16.
Mol Biol Rep ; 39(3): 2275-83, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21647549

RESUMO

A chalcone reductase (CHR) gene was isolated from Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao (A. mongholicus). The full-length cDNA of A. mongholicus CHR, designated as Amchr (GenBank accession No. HM357239), was 1196 bp long. It had a 957 bp open reading frame encoding a 318-amino acid protein of 35 kDa, a 67 bp 5' non-coding region and a 172 bp 3'-untranslated region. The putative AmCHR protein showed striking similarity to CHR from other leguminous species. Two-dimensional structure modeling showed that AmCHR consisted of 45.28% α-helix, 10.38% extended strand and 44.34% random coil. Prediction showed that three-dimensional AmCHR was a global protein containing an aldo-ket-red domain, with a putative Asp-Tyr-Lys-His catalytic tetrad in the center. The AmCHR gene was 1251 bp long, consisting of three exons and two introns. Intron I was 125 bp and intron II was 169 bp long. Southern blot analysis indicated that Amchr belonged to a small multigene family. Under natural conditions, Amchr was expressed differentially in the root, stem and leaf tissues of A. mongholicus, with a preferential expression in the root. The recombinant AmCHR protein was successfully expressed in Escherichia coli strain BL21 with pET42a vector. The result showed that the expressed AmCHR protein had molecular weight of about 35 kDa, which matched the size of the predicted protein by bioinformatic analysis. This study opened avenues towards understanding of the function of AmCHR protein and the role of the Amchr gene in the calycosin-7-O-ß-D: -glucoside branch pathway in A. mongholicus.


Assuntos
Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Astragalus propinquus/enzimologia , Sequência de Bases , Southern Blotting , Clonagem Molecular , Biologia Computacional , DNA Complementar/genética , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Estrutura Molecular , Análise de Sequência de DNA
17.
Cancer Lett ; 528: 59-75, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34958892

RESUMO

The pancreatic ductal adenocarcinoma (PDAC) microenvironment contains dense desmoplastic stroma dominated by cancer-associated fibroblasts (CAFs) and is crucial to cancer development and progression. Several studies have revealed that thrombospondin 2 (THBS2) is a valuable serological-marker in PDAC. However, the detailed mechanism of the cancer-stroma interactome remains unclear. Here we showed that elevated THBS2 expression in PDAC was predominantly restricted to stroma and correlated with tumor progression and poor prognosis by quantitative proteomics and immunohistochemistry analyses. RNA in situ hybridization confirmed that CAFs but not neoplastic cells expressed THBS2 in precancerous lesions and its levels gradually increased with disease progression in genetically engineered mouse models. Mechanistically, cancer cell-secreted TGF-ß1 activated CAFs to induce THBS2 expression via the p-Smad2/3 pathway. Consequently, CAF-derived THBS2 bound to the membrane receptors integrin αvß3/CD36 and activated the MAPK pathway in PDAC cells to promote tumor growth and adhesion in vitro and in vivo. Inhibition of integrin αvß3, CD36, MEK and JNK rescued THBS2-induced malignant phenotypes. In conclusion, the TGF-ß1-THBS2-integrin αvß3/CD36-MAPK cascade forms a complex feedback circuit to mediate reciprocal interactions of pancreatic cancer cells-CAFs. THBS2 may act as a novel therapeutic-target to block the cancer-stroma communication.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Integrina alfaVbeta3/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Neoplasias Pancreáticas/genética , Fator de Crescimento Transformador beta1/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Microambiente Tumoral
18.
Nat Cell Biol ; 24(5): 723-736, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35469017

RESUMO

The disassembly of integrin-containing focal adhesions (FAs) at mitotic entry is essential for cell rounding, mitotic retraction fibre formation, bipolar spindle positioning and chromosome segregation. The mechanism that drives FA disassembly at mitotic entry is unknown. Here, we show that the CDK1-cyclin B1 complex phosphorylates the integrin activator kindlin, which results in the recruitment of the cullin 9-FBXL10 ubiquitin ligase complex that mediates kindlin ubiquitination and degradation. This molecular pathway is essential for FA disassembly and cell rounding, as phospho-inhibitory mutations of the CDK1 motif prevent kindlin degradation, FA disassembly and mitotic cell rounding. Conversely, phospho-mimetic mutations promote kindlin degradation in interphase, accelerate mitotic cell rounding and impair mitotic retraction fibre formation. Despite the opposing effects on kindlin stability, both types of mutations cause severe mitotic spindle defects, apoptosis and aneuploidy. Thus, the exquisite regulation of kindlin levels at mitotic entry is essential for cells to progress accurately through mitosis.


Assuntos
Proteína Quinase CDC2 , Adesões Focais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina B1/genética , Ciclina B1/metabolismo , Adesões Focais/genética , Adesões Focais/metabolismo , Integrinas/metabolismo , Mitose/genética , Fosforilação , Fuso Acromático/genética , Fuso Acromático/metabolismo
19.
Front Oncol ; 12: 825783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350571

RESUMO

Background: The MTA1 protein encoded by metastasis-associated protein 1 (MTA1) is a key component of the ATP-dependent nucleosome remodeling and deacetylase (NuRD) complex, which is widely upregulated in cancers. MTA1 extensively affects downstream gene expression by participating in chromatin remodeling. Although it was defined as a metastasis-associated gene in first reports and metastasis is a process prominently affected by the tumor microenvironment, whether it affects the microenvironment has not been investigated. In our study, we elucidated the regulatory effect of MTA1 on tumor-associated macrophages (TAMs) and how this regulation affects the antitumor effect of cytotoxic T lymphocytes (CTLs) in the tumor microenvironment of colorectal cancer. Methods: We detected the cytokines affected by MTA1 expression via a cytokine antibody array in control HCT116 cells and HCT116 cells overexpressing MTA1. Multiplex IHC staining was conducted on a colorectal cancer tissue array from our cancer cohort. Flow cytometry (FCM) was performed to explore the polarization of macrophages in the coculture system and the antitumor killing effect of CTLs in the coculture system. Bioinformatics analysis was conducted to analyze the Cancer Genome Atlas (TCGA) colorectal cancer cohort and single-cell RNA-seq data to assess the immune infiltration status of the TCGA colorectal cancer cohort and the functions of myeloid cells. Results: MTA1 upregulation in colorectal cancer was found to drive an immunosuppressive tumor microenvironment. In the tumor microenvironment of MTA1-upregulated colorectal cancer, although CD8+ T cells were significantly enriched, macrophages were significantly decreased, which impaired the CTL effect of the CD8+ T cells on tumor cells. Moreover, upregulated MTA1 in tumor cells significantly induced infiltrated macrophages into tumor-associated macrophage phenotypes and further weakened the cytotoxic effect of CD8+ T cells. Conclusion: Upregulation of MTA1 in colorectal cancer drives an immunosuppressive tumor microenvironment by decreasing the microphages from the tumor and inducing the residual macrophages into tumor-associated microphage phenotypes to block the activation of the killing CTL, which contributes to cancer progression.

20.
Oncogene ; 41(38): 4336-4348, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945453

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most fatal malignancies worldwide. Recently, our group identified purine-rich element binding protein alpha (PURα), a single-stranded DNA/RNA-binding protein, to be significantly associated with the progression of ESCC. Additional immunofluorescence staining demonstrated that PURα forms cytoplasmic stress granules to suppress mRNA translation initiation. The expression level of cytoplasmic PURα in ESCC tumor tissues was significantly higher than that in adjacent epithelia and correlated with a worse patient survival rate by immunohistochemistry. Functionally, PURα strongly preferred to bind to UG-/U-rich motifs and mRNA 3´UTR by CLIP-seq analysis. Moreover, PURα knockout significantly increased the protein level of insulin-like growth factor binding protein 3 (IGFBP3). In addition, it was further demonstrated that PURα-interacting proteins are remarkably associated with translation initiation factors and ribosome-related proteins and that PURα regulates protein expression by interacting with translation initiation factors, such as PABPC1, eIF3B and eIF3F, in an RNA-independent manner, while the interaction with ribosome-related proteins is significantly dependent on RNA. Specifically, PURα was shown to interact with the mRNA 3´UTR of IGFBP3 and inhibit its expression by suppressing mRNA translation initiation. Together, this study identifies cytoplasmic PURα as a modulator of IGFBP3, which could be a promising therapeutic target for ESCC treatment.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regiões 3' não Traduzidas , DNA de Cadeia Simples , Proteínas de Ligação a DNA/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Biossíntese de Proteínas , Purinas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Grânulos de Estresse , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA