Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 206(7): 1443-1453, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33658296

RESUMO

Insulin receptor (IR) expression on the T cell surface can indicate an activated state; however, the IR is also chemotactic, enabling T cells with high IR expression to physically move toward insulin. In humans with type 1 diabetes (T1D) and the NOD mouse model, a T cell-mediated autoimmune destruction of insulin-producing pancreatic ß cells occurs. In previous work, when purified IR+ and IR- T cells were sorted from diabetic NOD mice and transferred into irradiated nondiabetic NOD mice, only those that received IR+ T cells developed insulitis and diabetes. In this study, peripheral blood samples from individuals with T1D (new onset to 14 y of duration), relatives at high-risk for T1D, defined by positivity for islet autoantibodies, and healthy controls were examined for frequency of IR+ T cells. High-risk individuals had significantly higher numbers of IR+ T cells as compared with those with T1D (p < 0.01) and controls (p < 0.001); however, the percentage of IR+ T cells in circulation did not differ significantly between T1D and control subjects. With the hypothesis that IR+ T cells traffic to the pancreas in T1D, we developed a (to our knowledge) novel mouse model exhibiting a FLAG-tagged mouse IR on T cells on the C57BL/6 background, which is not susceptible to developing T1D. Interestingly, these C57BL/6-CD3FLAGmIR/mfm mice showed evidence of increased IR+ T cell trafficking into the islets compared with C57BL/6 controls (p < 0.001). This transgenic animal model provides a (to our knowledge) novel platform for investigating the influence of IR expression on T cell trafficking and the development of insulitis.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/patologia , Pâncreas/imunologia , Receptor de Insulina/metabolismo , Linfócitos T/imunologia , Adolescente , Adulto , Animais , Movimento Celular , Criança , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Risco , Adulto Jovem
2.
Bioconjug Chem ; 30(7): 2049-2059, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31274300

RESUMO

Type 1 diabetes (T1D) is an autoimmune disorder characterized by autoimmune cell mediated destruction of pancreatic beta cells. Pancreatic beta cells are the only source of insulin in the body. T1D patients then have to depend on insulin injections for their lifetime. Insulin injection can modulate the blood sugar levels, but insulin has little effect on the autoimmune process. Altered peptide ligands (APL) derived from known autoantigens in T1D are able to induce tolerance in autoreactive cells in T1D animal models, but are currently unable to elicit this protection in humans. There is a need to improve immunogenicity of the APLs, as these short peptides can be easily degraded by enzymes in the blood. GAD546-554 is a dominant epitope recognized by autoreactive T cells in the nonobese diabetic (NOD) mouse model that can cause destruction of beta cells. Alanine substitution at the eighth position of GAD546-554 peptide (APL9) induced tolerance in a GAD546-554 specific cytotoxic T lymphocyte clone. To improve the antigen presentation and endosomal escape of APL9, we developed a bioconjugate platform that consists of a liposome containing a bioconjugate of APL9 and toll-like receptor 2 ligand Pam3CysSK4 as well as an antibody against macrophage protein F4/80. APL9 bioconjugate liposome with F4/80 antibody was able to induce tolerance in a GAD 546-554 specific clone. Diabetic NOD splenocytes pretreated with APL9 bioconjugate were also not able to transfer diabetes into prediabetic NOD recipient mice. This work is beneficial to prevent T1D as an immunotherapy strategy to render autoreactive immune cells more tolerant of beta cells.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Fatores Imunológicos/uso terapêutico , Peptídeos/uso terapêutico , Linfócitos T Citotóxicos/efeitos dos fármacos , Animais , Apresentação de Antígeno/efeitos dos fármacos , Diabetes Mellitus Tipo 1/imunologia , Feminino , Tolerância Imunológica/efeitos dos fármacos , Fatores Imunológicos/síntese química , Fatores Imunológicos/química , Camundongos Endogâmicos NOD , Peptídeos/síntese química , Peptídeos/química , Linfócitos T Citotóxicos/imunologia
3.
Biomolecules ; 11(4)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918805

RESUMO

The newly established CD3FLAG-mIR transgenic mouse model on a C57Bl/6 background has a FLAG tag on the mouse Insulin Receptor (mIR), specifically on T cells, as the FLAG-tagged mIR gene was engineered behind CD3 promoter and enhancer. The IR is a chemotactic molecule for insulin and the Flag-tagged mIR T cells in the BL/6-CD3FLAGmIR transgenic mice can migrate into the pancreas, as shown by immunofluorescent staining. While the transgenic mice do not become diabetic, there are phenotypic and metabolic changes in the islets. The transgenic islets become enlarged and disorganized by 15 weeks and those phenotypes continue out to 35 weeks of age. We examined the islets by RT-PCR for cell markers, ER stress markers, beta cell proliferation markers, and cytokines, as well as measuring serum insulin and insulin content in the pancreas at 15, 25, and 35 weeks of age. In transgenic mice, insulin in serum was increased at 15 weeks of age and glucose intolerance developed by 25 weeks of age. Passage of transgenic spleen cells into C57Bl/6 RAG-/- mice resulted in enlarged and disorganized islets with T infiltration by 4 to 5 weeks post-transfer, replicating the transgenic mouse studies. Therefore, migration of non-antigen-specific T cells into islets has ramifications for islet organization and function.


Assuntos
Secreção de Insulina , Células Secretoras de Insulina/patologia , Pancreatite/genética , Receptor de Insulina/genética , Linfócitos T/metabolismo , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Estresse do Retículo Endoplasmático , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pancreatite/metabolismo , Pancreatite/patologia , Receptor de Insulina/metabolismo , Linfócitos T/fisiologia , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA