Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 20(5)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871004

RESUMO

Most breast cancer patients die due to bone metastasis. Although metastasis accounts for 5% of the breast cancer cases, it is responsible for most of the deaths. Sometimes even before the detection of a primary tumor, most of the patients have bone and lymph node metastasis. Moreover, at the time of death, breast cancer patients have the bulk of the tumor burden in their bones. Therapy options are available for the treatment of primary tumors, but there are minimal options for treating breast cancer patients who have bone metastasis. C-X-C motif chemokine receptor type 2 (CXCR2) receptor-mediated signaling has been shown to play a critical role during bone-related inflammations and its ligands C-X-C motif chemokine ligand 6 (CXCL6) and 8 (CXCL8) aid in the resorption of bone during bone metastasis. In this study, we tested the hypothesis that CXCR2 contributes to mammary tumor-induced osteolysis and bone metastasis. In the present study, we examined the role of both tumor cell-derived and host-derived CXCR2 in influencing mammary tumor cell bone metastasis. For understanding the role of tumor cell-derived CXCR2, we utilized Cl66 CXCR2 knockdown (Cl66-shCXCR2) and Cl66-Control cells (Cl66-Control) and observed a significant decrease in tumor growth and tumor-induced osteolysis in Cl66-shCXCR2 cells in comparison with the Cl66-Control cells. Next, for understanding the role of host-derived CXCR2, we utilized mice with genomic knockdown of CXCR2 (Cxcr2-/-) and injected Cl66-Luciferase (Cl66-Luc) or 4T1-Luciferase (4T1-Luc) cells. We observed decreased bone destruction and metastasis in the bone of Cxcr2-/- mice. Our data suggest the importance of both tumor cell- and host-derived CXCR2 signaling in the bone metastasis of breast cancer cells.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Metástase Linfática/patologia , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Receptores de Interleucina-8B/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Feminino , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos BALB C , Osteólise/metabolismo , Osteólise/patologia , Transdução de Sinais/fisiologia , Carga Tumoral/fisiologia
2.
J Clin Invest ; 132(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35511419

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder whose most debilitating pathology is progressive and cumulative heterotopic ossification (HO) of skeletal muscles, ligaments, tendons, and fascia. FOP is caused by mutations in the type I BMP receptor gene ACVR1, which enable ACVR1 to utilize its natural antagonist, activin A, as an agonistic ligand. The physiological relevance of this property is underscored by the fact that HO in FOP is exquisitely dependent on activation of FOP-mutant ACVR1 by activin A, an effect countered by inhibition of anti-activin A via monoclonal antibody treatment. Hence, we surmised that anti-ACVR1 antibodies that block activation of ACVR1 by ligands should also inhibit HO in FOP and provide an additional therapeutic option for this condition. Therefore, we generated anti-ACVR1 monoclonal antibodies that block ACVR1's activation by its ligands. Surprisingly, in vivo, these anti-ACVR1 antibodies stimulated HO and activated signaling of FOP-mutant ACVR1. This property was restricted to FOP-mutant ACVR1 and resulted from anti-ACVR1 antibody-mediated dimerization of ACVR1. Conversely, wild-type ACVR1 was inhibited by anti-ACVR1 antibodies. These results uncover an additional property of FOP-mutant ACVR1 and indicate that anti-ACVR1 antibodies should not be considered as therapeutics for FOP.


Assuntos
Miosite Ossificante , Ossificação Heterotópica , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/farmacologia , Anticorpos/imunologia , Humanos , Ligantes , Mutação , Miosite Ossificante/genética , Ossificação Heterotópica/genética , Ossificação Heterotópica/patologia , Transdução de Sinais/genética
3.
J Carcinog ; 10: 40, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22368515

RESUMO

BACKGROUND: Chemokines and their receptors have long been known to regulate metastasis in various cancers. Previous studies have shown that CXCR2 expression is upregulated in malignant breast cancer tissues but not in benign ductal epithelial samples. The functional role of CXCR2 in the metastatic phenotype of breast cancer still remains unclear. We hypothesize that the chemokine receptor, CXCR2, mediates tumor cell invasion and migration and promotes metastasis in breast cancer. The objective of this study is to investigate the potential role of CXCR2 in the metastatic phenotype of mouse mammary tumor cells. MATERIALS AND METHODS: We evaluated the functional role of CXCR2 in breast cancer by stably downregulating the expression of CXCR2 in metastatic mammary tumor cell lines Cl66 and 4T1, using short hairpin RNA (shRNA). The effects of CXCR2 downregulation on tumor growth, invasion and metastatic potential were analyzed in vitro and in vivo. RESULTS: We demonstrated knock down of CXCR2 in Cl66 and 4T1 cells (Cl66-shCXCR2 and 4T1-shCXCR2) cells by reverse transcriptase polymerase chain reaction (RT-PCR) at the transcriptional level and by immunohistochemistry at the protein level. We did not observe a significant difference in in vitro cell proliferation between vector control and CXCR2 knock-down Cl66 or 4T1 cells. Next, we examined the invasive potential of Cl66-shCXCR2 cells by in vitro Matrigel invasion assay. We observed a significantly lower number (52 ± 5) of Cl66-shCXCR2 cells invading through Matrigel compared to control cells (Cl66-control) (182 ± 3) (P < 0.05). We analyzed the in vivo metastatic potential of Cl66-shCXCR2 using a spontaneous metastasis model by orthotopically implanting cells into the mammary fat pad of female BALB/c mice. Animals were sacrificed 12 weeks post tumor implantation and tissue samples were analyzed for metastatic nodules. CXCR2 downregulation significantly inhibited tumor cell metastasis. All the mice (n = 10) implanted with control Cl66 cells spontaneously developed lung metastasis, whereas a significantly lower number of mice (40%) implanted with Cl66-shCXCR2 cells exhibited lung metastases. CONCLUSIONS: Together, these results suggest that CXCR2 may play a critical role in breast cancer invasion and metastasis.

4.
Int J Cancer ; 126(2): 328-36, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19585580

RESUMO

CXCR1 and CXCR2 are receptors for CXCL-8 and are differentially expressed on melanoma and endothelial cells. In this study, we determined the functional role of these receptors in melanoma progression. We stably knock-down the expression of CXCR1 and/or CXCR2 in A375-SM (SM; high metastatic) human melanoma cells by short-hairpin RNA transfection. Cell proliferation, migration, invasion, ERK phosphorlyation and cytoskeletal rearrangements were carried out in vitro. In vivo growth was evaluated using murine subcutaneous xenograft model. Our data demonstrate that knock-down of CXCR1 and/or CXCR2 expression, inhibited melanoma cell proliferation, survival, migration and invasive potential in vitro. Moreover, we also observed inhibition of ERK phosphorylation and cytoskeltal rearrangement in SM-shCXCR1, SM-shCXCR2 and SM-shCXCR1/2 cells. Furthermore, when SM-shCXCR1 or SM-shCXCR2 cells implanted in nude mice, tumor growth, proliferation and microvessel density was significantly inhibited as compared to SM-control cells. In addition, we observed a significant increase in melanoma cell apoptosis in SM-shCXCR1 and SM-shCXCR2 tumors compared to SM-control tumors. Together, these data demonstrate that CXCR1 and CXCR2 expression play a critical role in human melanoma tumor progression and, functional blockade of CXCR1 and CXCR2 could be potentially used for future therapeutic intervention in malignant melanoma.


Assuntos
Melanoma/patologia , Interferência de RNA , Receptores de Interleucina-8A/fisiologia , Receptores de Interleucina-8B/fisiologia , Actinas/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Feminino , Humanos , Melanoma/irrigação sanguínea , Melanoma/genética , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Invasividade Neoplásica , Transplante de Neoplasias , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Fosforilação , RNA Interferente Pequeno/genética , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Transplante Heterólogo , Carga Tumoral
5.
Clin Cancer Res ; 15(7): 2380-6, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19293256

RESUMO

PURPOSE: Melanoma, the most aggressive form of skin cancer, accounts for 75% of all skin cancer-related deaths and current therapeutic strategies are not effective in advanced disease. In the current study, we have investigated the efficacy of orally active small-molecule antagonist targeting CXCR2/CXCR1. EXPERIMENTAL DESIGN: Human A375SM melanoma cells were treated with SCH-479833 or SCH-527123, and their effect on proliferation, motility, and invasion was evaluated in vitro. We examined the downstream signaling events in the cells following treatment with antagonists. For in vivo studies, A375SM cells were implanted subcutaneously into athymic nude mice followed by administration of SCH-479833, SCH-527123, or hydroxypropyl-beta-cyclodextrin (20%) orally for 21 days and their effect on tumor growth and angiogenesis was evaluated. RESULTS: Our data show that SCH-479833 or SCH-527123 inhibited the melanoma cell proliferation, chemotaxis, and invasive potential in vitro. Treatment of melanoma cells with SCH-479833 or SCH-527123 also inhibited tumor growth. Histologic and histochemical analyses showed significant (P < 0.05) decreases in tumor cell proliferation and microvessel density in tumors. Moreover, we observed a significant increase in melanoma cell apoptosis in SCH-479833- or SCH-527123-treated animals compared with controls. CONCLUSION: Together, these studies show that selectively targeting CXCR2/CXCR1 with orally active small-molecule inhibitors is a promising therapeutic approach for inhibiting melanoma growth and angiogenesis.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Benzamidas/uso terapêutico , Ciclobutanos/uso terapêutico , Melanoma/tratamento farmacológico , Receptores de Interleucina-8A/antagonistas & inibidores , Receptores de Interleucina-8B/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Administração Oral , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/química , Animais , Benzamidas/administração & dosagem , Benzamidas/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Sobrevivência Celular , Quimiotaxia/efeitos dos fármacos , Ciclobutanos/administração & dosagem , Ciclobutanos/química , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/irrigação sanguínea , Melanoma/patologia , Camundongos , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Neoplasias Cutâneas/irrigação sanguínea , Neoplasias Cutâneas/patologia
6.
Curr Osteoporos Rep ; 8(2): 105-13, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20425618

RESUMO

The metastasis of tumor cells to distant organs is the primary cause of cancer-related mortality in most cancers. The interaction of tumor cells with local stroma at the metastatic site plays a critical role in metastatic dissemination and the establishment of metastases. These tumor-stromal interactions regulate several important steps including degradation of extracellular matrix, release of sequestered growth factors, and expression of chemokines, cytokines, and receptors on tumor cells and the interacting stromal cells. Breast, prostate, and lung cancers preferentially metastasize to bone. Tumor cell interactions with the bone microenvironment initiate a series of complex cellular interactions that promotes establishment of osteoclastic and/or osteoblastic metastasis. Understanding the interactions between tumor cells and the stroma is important to identify molecular targets to develop novel therapies aimed at reducing metastasis formation. In this article, we review the important mechanisms of tumor-stromal interaction in the development of bone metastasis.


Assuntos
Neoplasias Ósseas/secundário , Comunicação Celular , Osteoblastos/patologia , Neoplasias Ósseas/patologia , Progressão da Doença , Humanos , Metástase Neoplásica
7.
Bone ; 138: 115473, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32553795

RESUMO

Heterotopic ossification (HO), the formation of ectopic bone in soft tissues, has been extensively studied in its two primary forms: post-traumatic HO (tHO) typically found in patients who have experienced musculoskeletal or neurogenic injury and in fibrodysplasia ossificans progressiva (FOP), where it is genetically driven. Given that in both diseases HO arises via endochondral ossification, the molecular mechanisms behind both diseases have been postulated to be manifestations of similar pathways including those activated by BMP/TGFß superfamily ligands. A significant step towards understanding the molecular mechanism by which HO arises in FOP was the discovery that FOP causing ACVR1 variants trigger HO in response to activin A, a ligand that does not activate signaling from wild type ACVR1, and that is not inherently osteogenic in wild type settings. The physiological significance of this finding was demonstrated by showing that activin A neutralizing antibodies stop HO in two different genetically accurate mouse models of FOP. In order to explore the role of activin A in tHO, we performed single cell RNA sequencing and compared the expression of activin A as well as other BMP pathway genes in tHO and FOP HO. We show that activin A is expressed in response to injury in both settings, but by different types of cells. Given that wild type ACVR1 does not transduce signal when engaged by activin A, we hypothesized that inhibition of activin A will not block tHO. Nonetheless, as activin A was expressed in tHO lesions, we tested its inhibition and compared it with inhibition of BMPs. We show here that anti-activin A does not block tHO, whereas agents such as antibodies that neutralize ACVR1 or ALK3-Fc (which blocks osteogenic BMPs) are beneficial, though not completely curative. These results demonstrate that inhibition of activin A should not be considered as a therapeutic strategy for ameliorating tHO.


Assuntos
Miosite Ossificante , Ossificação Heterotópica , Receptores de Ativinas Tipo I/genética , Ativinas , Animais , Humanos , Camundongos , Miosite Ossificante/genética
8.
Elife ; 92020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32515349

RESUMO

Activin A functions in BMP signaling in two ways: it either engages ACVR1B to activate Smad2/3 signaling or binds ACVR1 to form a non-signaling complex (NSC). Although the former property has been studied extensively, the roles of the NSC remain unexplored. The genetic disorder fibrodysplasia ossificans progressiva (FOP) provides a unique window into ACVR1/Activin A signaling because in that disease Activin can either signal through FOP-mutant ACVR1 or form NSCs with wild-type ACVR1. To explore the role of the NSC, we generated 'agonist-only' Activin A muteins that activate ACVR1B but cannot form the NSC with ACVR1. Using one of these muteins, we demonstrate that failure to form the NSC in FOP results in more severe disease pathology. These results provide the first evidence for a biological role for the NSC in vivo and pave the way for further exploration of the NSC's physiological role in corresponding knock-in mice.


Assuntos
Receptores de Ativinas Tipo I/metabolismo , Ativinas/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Miosite Ossificante/genética , Transdução de Sinais/genética , Receptores de Ativinas Tipo I/genética , Ativinas/genética , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Técnicas de Introdução de Genes , Camundongos , Camundongos Transgênicos , Mutação , Miosite Ossificante/patologia
9.
Eur J Hum Genet ; 28(9): 1243-1264, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32376988

RESUMO

Previously we reported the identification of a homozygous COL27A1 (c.2089G>C; p.Gly697Arg) missense variant and proposed it as a founder allele in Puerto Rico segregating with Steel syndrome (STLS, MIM #615155); a rare osteochondrodysplasia characterized by short stature, congenital bilateral hip dysplasia, carpal coalitions, and scoliosis. We now report segregation of this variant in five probands from the initial clinical report defining the syndrome and an additional family of Puerto Rican descent with multiple affected adult individuals. We modeled the orthologous variant in murine Col27a1 and found it recapitulates some of the major Steel syndrome associated skeletal features including reduced body length, scoliosis, and a more rounded skull shape. Characterization of the in vivo murine model shows abnormal collagen deposition in the extracellular matrix and disorganization of the proliferative zone of the growth plate. We report additional COL27A1 pathogenic variant alleles identified in unrelated consanguineous Turkish kindreds suggesting Clan Genomics and identity-by-descent homozygosity contributing to disease in this population. The hypothesis that carrier states for this autosomal recessive osteochondrodysplasia may contribute to common complex traits is further explored in a large clinical population cohort. Our findings augment our understanding of COL27A1 biology and its role in skeletal development; and expand the functional allelic architecture in this gene underlying both rare and common disease phenotypes.


Assuntos
Anormalidades Múltiplas/genética , Colágenos Fibrilares/genética , Efeito Fundador , Luxação do Quadril/genética , Escoliose/genética , Anormalidades Múltiplas/patologia , Adolescente , Animais , Desenvolvimento Ósseo , Criança , Pré-Escolar , Consanguinidade , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Colágenos Fibrilares/metabolismo , Frequência do Gene , Luxação do Quadril/patologia , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Linhagem , Escoliose/patologia , Síndrome
10.
Cancer Sci ; 100(1): 71-81, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19038005

RESUMO

Understanding the cellular and molecular changes in the bone microenvironment is important for developing novel therapeutics to control breast cancer bone metastasis. Although the underlying mechanism(s) of bone metastasis has been the focus of intense investigation, relatively little is known about complex molecular interactions between malignant cells and bone stroma. Using a murine syngeneic model that mimics osteolytic changes associated with human breast cancer, we examined the role of tumor-bone interaction in tumor-induced osteolysis and malignant growth in the bone microenvironment. We identified transforming growth factor-beta receptor 1 (TGF-betaRI) as a commonly upregulated gene at the tumor-bone (TB) interface. Moreover, TGF-betaRI expression and activation, analyzed by nuclear localization of phospho-Smad2, was higher in tumor cells and osteoclasts at the TB interface as compared to the tumor-alone area. Furthermore, attenuation of TGF-beta activity by neutralizing antibody to TGF-beta or TGF-betaRI kinase inhibitor reduced mammary tumor-induced osteolysis, TGF-betaRI expression and its activation. In addition, we demonstrate a potential role of TGF-beta as an important modifier of receptor activator of NF-kappaB ligand (RANKL)-dependent osteoclast activation and osteolysis. Together, these studies demonstrate that inhibition of TGF-betaRI signaling at the TB interface will be a therapeutic target in the treatment of breast cancer-induced osteolysis.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias Mamárias Experimentais/patologia , Osteoclastos/fisiologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Osteoclastos/citologia , Osteólise , Proteínas Serina-Treonina Quinases/análise , Proteínas Serina-Treonina Quinases/genética , Ligante RANK/fisiologia , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/análise , Receptores de Fatores de Crescimento Transformadores beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA