Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nature ; 604(7904): 146-151, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355016

RESUMO

Diploid and stable karyotypes are associated with health and fitness in animals. By contrast, whole-genome duplications-doublings of the entire complement of chromosomes-are linked to genetic instability and frequently found in human cancers1-3. It has been established that whole-genome duplications fuel chromosome instability through abnormal mitosis4-8; however, the immediate consequences of tetraploidy in the first interphase are not known. This is a key question because single whole-genome duplication events such as cytokinesis failure can promote tumorigenesis9. Here we find that human cells undergo high rates of DNA damage during DNA replication in the first S phase following induction of tetraploidy. Using DNA combing and single-cell sequencing, we show that DNA replication dynamics is perturbed, generating under- and over-replicated regions. Mechanistically, we find that these defects result from a shortage of proteins during the G1/S transition, which impairs the fidelity of DNA replication. This work shows that within a single interphase, unscheduled tetraploid cells can acquire highly abnormal karyotypes. These findings provide an explanation for the genetic instability landscape that favours tumorigenesis after tetraploidization.


Assuntos
Instabilidade Cromossômica , Dano ao DNA , Duplicação Gênica , Fase S , Tetraploidia , Instabilidade Cromossômica/genética , Replicação do DNA , Humanos , Cariótipo , Mitose , Fase S/genética
2.
Semin Cell Dev Biol ; 156: 22-34, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-37988794

RESUMO

Apoptosis is the best described form of regulated cell death, and was, until relatively recently, considered irreversible once particular biochemical points-of-no-return were activated. In this manuscript, we examine the mechanisms cells use to escape from a self-amplifying death signaling module. We discuss the role of feedback, dynamics, propagation, and noise in apoptotic signaling. We conclude with a revised model for the role of apoptosis in animal development, homeostasis, and disease.


Assuntos
Apoptose , Transdução de Sinais , Animais , Apoptose/fisiologia , Morte Celular
3.
Proc Natl Acad Sci U S A ; 120(4): e2216531120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669100

RESUMO

Executioner-caspase activation has been considered a point-of-no-return in apoptosis. However, numerous studies report survival from caspase activation after treatment with drugs or radiation. An open question is whether cells can recover from direct caspase activation without pro-survival stress responses induced by drugs. To address this question, we engineered a HeLa cell line to express caspase-3 inducibly and combined it with a quantitative caspase activity reporter. While high caspase activity levels killed all cells and very low levels allowed all cells to live, doses of caspase activity sufficient to kill 15 to 30% of cells nevertheless allowed 70 to 85% to survive. At these doses, neither the rate, nor the peak level, nor the total amount of caspase activity could accurately predict cell death versus survival. Thus, cells can survive direct executioner-caspase activation, and variations in cellular state modify the outcome of potentially lethal caspase activity. Such heterogeneities may underlie incomplete tumor cell killing in response to apoptosis-inducing cancer treatments.


Assuntos
Apoptose , Humanos , Sobrevivência Celular/fisiologia , Células HeLa , Morte Celular , Apoptose/fisiologia , Caspase 3/genética , Caspase 3/metabolismo , Proteólise , Caspase 8/metabolismo
6.
Chromosome Res ; 24(1): 127-44, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26643310

RESUMO

The centrosome is the main microtubule organizing center of animal cells. It contributes to spindle assembly and orientation during mitosis and to ciliogenesis in interphase. Numerical and structural defects in this organelle are known to be associated with developmental disorders such as dwarfism and microcephaly, but only recently, the molecular mechanisms linking centrosome aberrations to altered physiology are being elucidated. Defects in centrosome number or structure have also been described in cancer. These opposite clinical outcomes--arising from reduced proliferation and overproliferation respectively--can be explained in light of the tissue- and developmental-specific requirements for centrosome functions. The pathological outcomes of centrosome deficiencies have become clearer when considering its consequences. Among them, there are genetic instability (mainly aneuploidy, a defect in chromosome number), defects in the symmetry of cell division (important for cell fate specification and tissue architecture) and impaired ciliogenesis. In this review, we discuss the origins and the consequences of centrosome flaws, with particular attention on how they contribute to developmental diseases.


Assuntos
Aneuploidia , Centrossomo/metabolismo , Instabilidade Cromossômica , Cromossomos Humanos/metabolismo , Neoplasias/metabolismo , Animais , Centrossomo/patologia , Cromossomos Humanos/genética , Humanos , Neoplasias/genética , Neoplasias/patologia
7.
Adv Exp Med Biol ; 1002: 19-45, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28600781

RESUMO

Development requires cell proliferation, differentiation and spatial organization of daughter cells to occur in a highly controlled manner. The mode of cell division, the extent of proliferation and the spatial distribution of mitosis allow the formation of tissues of the right size and with the correct structural organization. All these aspects depend on cell cycle duration, correct chromosome segregation and spindle orientation. The centrosome, which is the main microtubule-organizing centre (MTOC) of animal cells, contributes to all these processes. As one of the most structurally complex organs in our body, the brain is particularly susceptible to centrosome dysfunction. Autosomal recessive primary microcephaly (MCPH), primordial dwarfism disease Seckel syndrome (SCKS) and microcephalic osteodysplastic primordial dwarfism type II (MOPD-II) are often connected to mutations in centrosomal genes. In this chapter, we discuss the consequences of centrosome dysfunction during development and how they can contribute to the etiology of human diseases.


Assuntos
Encéfalo/anormalidades , Centrossomo/patologia , Microcefalia/patologia , Mitose , Animais , Evolução Biológica , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Centrossomo/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Microcefalia/genética , Microcefalia/fisiopatologia , Morfogênese , Especificidade da Espécie
8.
Dev Cell ; 59(13): 1655-1667.e6, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38670102

RESUMO

Proteotoxic stress drives numerous degenerative diseases. Cells initially adapt to misfolded proteins by activating the unfolded protein response (UPR), including endoplasmic-reticulum-associated protein degradation (ERAD). However, persistent stress triggers apoptosis. Enhancing ERAD is a promising therapeutic approach for protein misfolding diseases. The ER-localized Zn2+ transporter ZIP7 is conserved from plants to humans and required for intestinal self-renewal, Notch signaling, cell motility, and survival. However, a unifying mechanism underlying these diverse phenotypes was unknown. In studying Drosophila border cell migration, we discovered that ZIP7-mediated Zn2+ transport enhances the obligatory deubiquitination of proteins by the Rpn11 Zn2+ metalloproteinase in the proteasome lid. In human cells, ZIP7 and Zn2+ are limiting for deubiquitination. In a Drosophila model of neurodegeneration caused by misfolded rhodopsin (Rh1), ZIP7 overexpression degrades misfolded Rh1 and rescues photoreceptor viability and fly vision. Thus, ZIP7-mediated Zn2+ transport is a previously unknown, rate-limiting step for ERAD in vivo with therapeutic potential in protein misfolding diseases.


Assuntos
Proteínas de Transporte de Cátions , Proteínas de Drosophila , Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático , Zinco , Animais , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Zinco/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Humanos , Retículo Endoplasmático/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Drosophila melanogaster/metabolismo , Resposta a Proteínas não Dobradas , Ubiquitinação , Movimento Celular , Drosophila/metabolismo
9.
J Cell Biol ; 222(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37747450

RESUMO

Src family kinases (SFKs) are evolutionarily conserved proteins acting downstream of receptors and regulating cellular processes including proliferation, adhesion, and migration. Elevated SFK expression and activity correlate with progression of a variety of cancers. Here, using the Drosophila melanogaster border cells as a model, we report that localized activation of a Src kinase promotes an unusual behavior: engulfment of one cell by another. By modulating Src expression and activity in the border cell cluster, we found that increased Src kinase activity, either by mutation or loss of a negative regulator, is sufficient to drive one cell to engulf another living cell. We elucidate a molecular mechanism that requires integrins, the kinases SHARK and FAK, and Rho family GTPases, but not the engulfment receptor Draper. We propose that cell cannibalism is a result of aberrant phagocytosis, where cells with dysregulated Src activity fail to differentiate between living and dead or self versus non-self, thus driving this malignant behavior.


Assuntos
Citofagocitose , Drosophila melanogaster , Quinases da Família src , Animais , Drosophila melanogaster/genética , Quinases da Família src/genética
10.
bioRxiv ; 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37292980

RESUMO

Proteotoxic stress drives numerous degenerative diseases. In response to misfolded proteins, cells adapt by activating the unfolded protein response (UPR), including endoplasmic reticulum-associated protein degradation (ERAD). However persistent stress triggers apoptosis. Enhancing ERAD is a promising therapeutic approach for protein misfolding diseases. From plants to humans, loss of the Zn2+ transporter ZIP7 causes ER stress, however the mechanism is unknown. Here we show that ZIP7 enhances ERAD and that cytosolic Zn2+ is limiting for deubiquitination of client proteins by the Rpn11 Zn2+ metalloproteinase as they enter the proteasome in Drosophila and human cells. ZIP7 overexpression rescues defective vision caused by misfolded rhodopsin in Drosophila. Thus ZIP7 overexpression may prevent diseases caused by proteotoxic stress, and existing ZIP inhibitors may be effective against proteasome-dependent cancers.

11.
J Cell Biol ; 219(4)2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32328633

RESUMO

Ploidy variations such as genome doubling are frequent in human tumors and have been associated with genetic instability favoring tumor progression. How polyploid cells deal with increased centrosome numbers and DNA content remains unknown. Using Drosophila neuroblasts and human cancer cells to study mitotic spindle assembly in polyploid cells, we found that most polyploid cells divide in a multipolar manner. We show that even if an initial centrosome clustering step can occur at mitotic entry, the establishment of kinetochore-microtubule attachments leads to spatial chromosome configurations, whereby the final coalescence of supernumerary poles into a bipolar array is inhibited. Using in silico approaches and various spindle and DNA perturbations, we show that chromosomes act as a physical barrier blocking spindle pole coalescence and bipolarity. Importantly, microtubule stabilization suppressed multipolarity by improving both centrosome clustering and pole coalescence. This work identifies inhibitors of bipolar division in polyploid cells and provides a rationale to understand chromosome instability typical of polyploid cancer cells.


Assuntos
Centrossomo/metabolismo , Poliploidia , Fuso Acromático/metabolismo , Animais , Células Cultivadas , Drosophila , Feminino , Células HEK293 , Humanos , Fuso Acromático/genética
12.
Curr Biol ; 29(22): 3937-3945.e7, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31708395

RESUMO

Polyploidy arises from the gain of complete chromosome sets [1], and it is known to promote cancer genome evolution. Recent evidence suggests that a large proportion of human tumors experience whole-genome duplications (WGDs), which might favor the generation of highly abnormal karyotypes within a short time frame, rather than in a stepwise manner [2-6]. However, the molecular mechanisms linking whole-genome duplication to genetic instability remain poorly understood. Using repeated cytokinesis failure to induce polyploidization of Drosophila neural stem cells (NSCs) (also called neuroblasts [NBs]), we investigated the consequences of polyploidy in vivo. Surprisingly, we found that DNA damage is generated in a subset of nuclei of polyploid NBs during mitosis. Importantly, our observations in flies were confirmed in mouse NSCs (mNSCs) and human cancer cells after acute cytokinesis inhibition. Interestingly, DNA damage occurs in nuclei that were not ready to enter mitosis but were forced to do so when exposed to the mitotic environment of neighboring nuclei within the same cell. Additionally, we found that polyploid cells are cell-cycle asynchronous and forcing cell-cycle synchronization was sufficient to lower the levels of DNA damage generated during mitosis. Overall, this work supports a model in which DNA damage at mitotic entry can generate DNA structural abnormalities that might contribute to the onset of genetic instability.


Assuntos
Ciclo Celular/fisiologia , Citocinese/genética , Dano ao DNA/genética , Animais , Ciclo Celular/genética , Linhagem Celular Tumoral , Citocinese/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitose/genética , Células-Tronco Neurais/metabolismo , Poliploidia
13.
Dev Cell ; 50(1): 11-24.e10, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31130353

RESUMO

Defects in mitotic spindle orientation (MSO) disrupt the organization of stem cell niches impacting tissue morphogenesis and homeostasis. Mutations in centrosome genes reduce MSO fidelity, leading to tissue dysplasia and causing several diseases such as microcephaly, dwarfism, and cancer. Whether these mutations perturb spindle orientation solely by affecting astral microtubule nucleation or whether centrosome proteins have more direct functions in regulating MSO is unknown. To investigate this question, we analyzed the consequences of deregulating Plk4 (the master centriole duplication kinase) activity in Drosophila asymmetrically dividing neural stem cells. We found that Plk4 functions upstream of MSO control, orchestrating centriole symmetry breaking and consequently centrosome positioning. Mechanistically, we show that Plk4 acts through Spd2 phosphorylation, which induces centriole release from the apical cortex. Overall, this work not only reveals a role for Plk4 in regulating centrosome function but also links the centrosome biogenesis machinery with the MSO apparatus.


Assuntos
Proteínas Cdh1/metabolismo , Centríolos/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células-Tronco Neurais/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/fisiologia , Animais , Proteínas Cdh1/genética , Ciclo Celular , Células Cultivadas , Centrossomo/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Masculino , Células-Tronco Neurais/citologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética
14.
Curr Biol ; 25(7): 879-89, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25772448

RESUMO

Centrosome amplification has severe consequences during development and is thought to contribute to a variety of diseases such as cancer and microcephaly. However, the adverse effects of centrosome amplification in epithelia are still not known. Here, we investigate the consequences of centrosome amplification in the Drosophila wing disc epithelium. We found that epithelial cells exhibit mechanisms of clustering but also inactivation of extra centrosomes. Importantly, these mechanisms are not fully efficient, and both aneuploidy and cell death can be detected. Epithelial cells with extra centrosomes generate tumors when transplanted into WT hosts and inhibition of cell death results in tissue over-growth and disorganization. Using SILAC-fly, we found that Moesin, a FERM domain protein, is specifically upregulated in wing discs with extra centrosomes. Moesin localizes to the centrosomes and mitotic spindle during mitosis, and we show that Moesin upregulation influences extra-centrosome behavior and robust bipolar spindle formation. This study provides a mechanistic explanation for the increased aneuploidy and transformation potential primed by centrosome amplification in epithelial tissues.


Assuntos
Centrossomo/metabolismo , Drosophila/metabolismo , Células Epiteliais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fuso Acromático/metabolismo , Regulação para Cima , Aneuploidia , Animais , Morte Celular , Células Epiteliais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA