Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 84: 199-226, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25580529

RESUMO

DNA mismatch repair is a conserved antimutagenic pathway that maintains genomic stability through rectification of DNA replication errors and attenuation of chromosomal rearrangements. Paradoxically, mutagenic action of mismatch repair has been implicated as a cause of triplet repeat expansions that cause neurological diseases such as Huntington disease and myotonic dystrophy. This mutagenic process requires the mismatch recognition factor MutSß and the MutLα (and/or possibly MutLγ) endonuclease, and is thought to be triggered by the transient formation of unusual DNA structures within the expanded triplet repeat element. This review summarizes the current knowledge of DNA mismatch repair involvement in triplet repeat expansion, which encompasses in vitro biochemical findings, cellular studies, and various in vivo transgenic animal model experiments. We present current mechanistic hypotheses regarding mismatch repair protein function in mediating triplet repeat expansions and discuss potential therapeutic approaches targeting the mismatch repair pathway.


Assuntos
Reparo de Erro de Pareamento de DNA , Expansão das Repetições de Trinucleotídeos , Animais , Cromatina/metabolismo , Escherichia coli , Instabilidade Genômica , Histonas/metabolismo , Humanos , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Conformação de Ácido Nucleico
2.
Mol Cell ; 82(19): 3538-3552.e5, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36075220

RESUMO

DNA becomes single stranded (ssDNA) during replication, transcription, and repair. Transiently formed ssDNA segments can adopt alternative conformations, including cruciforms, triplexes, and quadruplexes. To determine whether there are stable regions of ssDNA in the human genome, we utilized S1-END-seq to convert ssDNA regions to DNA double-strand breaks, which were then processed for high-throughput sequencing. This approach revealed two predominant non-B DNA structures: cruciform DNA formed by expanded (TA)n repeats that accumulate in microsatellite unstable human cancer cell lines and DNA triplexes (H-DNA) formed by homopurine/homopyrimidine mirror repeats common across a variety of cell lines. We show that H-DNA is enriched during replication, that its genomic location is highly conserved, and that H-DNA formed by (GAA)n repeats can be disrupted by treatment with a (GAA)n-binding polyamide. Finally, we show that triplex-forming repeats are hotspots for mutagenesis. Our results identify dynamic DNA secondary structures in vivo that contribute to elevated genome instability.


Assuntos
DNA Cruciforme , Nylons , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Humanos , Conformação de Ácido Nucleico
3.
Hum Mol Genet ; 31(20): 3539-3557, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35708503

RESUMO

Frataxin deficiency in Friedreich's ataxia results from transcriptional downregulation of the FXN gene caused by expansion of the intronic trinucleotide guanine-adenine-adenine (GAA) repeats. We used multiple transcriptomic approaches to determine the molecular mechanism of transcription inhibition caused by long GAAs. We uncovered that transcription of FXN in patient cells is prematurely terminated upstream of the expanded repeats leading to the formation of a novel, truncated and stable RNA. This FXN early terminated transcript (FXN-ett) undergoes alternative, non-productive splicing and does not contribute to the synthesis of functional frataxin. The level the FXN-ett RNA directly correlates with the length of the longer of the two expanded GAA tracts. Targeting GAAs with antisense oligonucleotides or excision of the repeats eliminates the transcription impediment, diminishes expression of the aberrant FXN-ett, while increasing levels of FXN mRNA and frataxin. Non-productive transcription may represent a common phenomenon and attractive therapeutic target in diseases caused by repeat-mediated transcription aberrations.


Assuntos
Ataxia de Friedreich , Adenina , Arsenicais , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Gálio , Guanina , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Oligonucleotídeos Antissenso , Poliadenilação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica , Expansão das Repetições de Trinucleotídeos/genética , Frataxina
4.
Neurobiol Dis ; 177: 105996, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36638893

RESUMO

Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin (FXN). Most FRDA patients are homozygous for large expansions of GAA repeats in intron 1 of FXN, while some are compound heterozygotes with an expanded GAA tract in one allele and a missense or nonsense mutation in the other. A missense mutation, changing a glycine to valine at position 130 (G130V), is prevalent among the clinical variants. We and others have demonstrated that levels of mature FXN protein in FRDA G130V samples are reduced below those detected in samples harboring homozygous repeat expansions. Little is known regarding expression and function of endogenous FXN-G130V protein due to lack of reagents and models that can distinguish the mutant FXN protein from the wild-type FXN produced from the GAA-expanded allele. We aimed to determine the effect of the G130V (murine G127V) mutation on Fxn expression and to define its multi-system impact in vivo. We used CRISPR/Cas9 to introduce the G127V missense mutation in the Fxn coding sequence and generated homozygous mice (FxnG127V/G127V). We also introduced the G127V mutation into a GAA repeat expansion FRDA mouse model (FxnGAA230/KO; KIKO) to generate a compound heterozygous strain (FxnG127V/GAA230). We performed neurobehavioral tests on cohorts of WT and Fxn mutant animals at three-month intervals for one year, and collected tissue samples to analyze molecular changes during that time. The endogenous Fxn G127V protein is detected at much lower levels in all tissues analyzed from FxnG127V/G127V mice compared to age and sex-matched WT mice without differences in Fxn transcript levels. FxnG127V/G127V mice are significantly smaller than WT counterparts, but perform similarly in most neurobehavioral tasks. RNA sequencing analysis revealed reduced expression of genes in oxidative phosphorylation and protein synthesis, underscoring the metabolic consequences in our mouse model expressing extremely low levels of Fxn. Results of these studies provide insight into the unique pathogenic mechanism of the FXN G130V mechanism and the tolerable limit of Fxn/FXN expression in vivo.


Assuntos
Ataxia de Friedreich , Doenças Neurodegenerativas , Camundongos , Animais , Doenças Neurodegenerativas/genética , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Biossíntese de Proteínas , Modelos Animais de Doenças , Ataxia de Friedreich/metabolismo , Expansão das Repetições de Trinucleotídeos , Frataxina
5.
Mol Cell Proteomics ; 20: 100094, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33991687

RESUMO

Identifying biomarkers is important for assessment of disease progression, prediction of symptom development, and determination of treatment effectiveness. While unbiased analyses of differential gene expression using next-generation sequencing methods are now routinely conducted, proteomics studies are more challenging because of traditional methods predominantly being low throughput and offering a limited dynamic range for simultaneous detection of hundreds of proteins that drastically differ in their intracellular abundance. We utilized a sensitive and high-throughput proteomic technique, reverse phase protein array (RPPA), to attain protein expression profiles of primary fibroblasts obtained from patients with Friedreich's ataxia (FRDA) and unaffected controls (CTRLs). The RPPA was designed to detect 217 proteins or phosphorylated proteins by individual antibody, and the specificity of each antibody was validated prior to the experiment. Among 62 fibroblast samples (44 FRDA and 18 CTRLs) analyzed, 30 proteins/phosphoproteins were significantly changed in FRDA fibroblasts compared with CTRL cells (p < 0.05), mostly representing signaling molecules and metabolic enzymes. As expected, frataxin was significantly downregulated in FRDA samples, thus serving as an internal CTRL for assay integrity. Extensive bioinformatics analyses were conducted to correlate differentially expressed proteins with critical disease parameters (e.g., selected symptoms, age of onset, guanine-adenine-adenine sizes, frataxin levels, and Functional Assessment Rating Scale scores). Members of the integrin family of proteins specifically associated with hearing loss in FRDA. Also, RPPA data, combined with results of transcriptome profiling, uncovered defects in the retinoic acid metabolism pathway in FRDA samples. Moreover, expression of aldehyde dehydrogenase family 1 member A3 differed significantly between cardiomyopathy-positive and cardiomyopathy-negative FRDA cohorts, demonstrating that metabolites such as retinol, retinal, or retinoic acid could become potential predictive biomarkers of cardiac presentation in FRDA.


Assuntos
Cardiomiopatias/metabolismo , Ataxia de Friedreich/metabolismo , Retinoides/metabolismo , Adolescente , Adulto , Idoso , Aldeído Oxirredutases/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Masculino , Pessoa de Meia-Idade , Análise Serial de Proteínas , Proteômica , Adulto Jovem , Frataxina
6.
Nucleic Acids Res ; 49(20): 11560-11574, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34718736

RESUMO

Friedreich's ataxia (FRDA) is a severe multisystem disease caused by transcriptional repression induced by expanded GAA repeats located in intron 1 of the Frataxin (FXN) gene encoding frataxin. FRDA results from decreased levels of frataxin; thus, stabilization of the FXN mRNA already present in patient cells represents an attractive and unexplored therapeutic avenue. In this work, we pursued a novel approach based on oligonucleotide-mediated targeting of FXN mRNA ends to extend its half-life and availability as a template for translation. We demonstrated that oligonucleotides designed to bind to FXN 5' or 3' noncoding regions can increase FXN mRNA and protein levels. Simultaneous delivery of oligonucleotides targeting both ends increases efficacy of the treatment. The approach was confirmed in several FRDA fibroblast and induced pluripotent stem cell-derived neuronal progenitor lines. RNA sequencing and single-cell expression analyses confirmed oligonucleotide-mediated FXN mRNA upregulation. Mechanistically, a significant elongation of the FXN mRNA half-life without any changes in chromatin status at the FXN gene was observed upon treatment with end-targeting oligonucleotides, indicating that transcript stabilization is responsible for frataxin upregulation. These results identify a novel approach toward upregulation of steady-state mRNA levels via oligonucleotide-mediated end targeting that may be of significance to any condition resulting from transcription downregulation.


Assuntos
Ataxia de Friedreich/terapia , Terapia Genética/métodos , Proteínas de Ligação ao Ferro/genética , Estabilidade de RNA , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Células Cultivadas , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , Frataxina
7.
J Lipid Res ; 63(9): 100255, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35850241

RESUMO

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a triplet guanine-adenine-adenine (GAA) repeat expansion in intron 1 of the FXN gene, which leads to decreased levels of the frataxin protein. Frataxin is involved in the formation of iron-sulfur (Fe-S) cluster prosthetic groups for various metabolic enzymes. To provide a better understanding of the metabolic status of patients with FRDA, here we used patient-derived fibroblast cells as a surrogate tissue for metabolic and lipidomic profiling by liquid chromatography-high resolution mass spectrometry. We found elevated HMG-CoA and ß-hydroxybutyrate-CoA levels, implying dysregulated fatty acid oxidation, which was further demonstrated by elevated acyl-carnitine levels. Lipidomic profiling identified dysregulated levels of several lipid classes in FRDA fibroblast cells when compared with non-FRDA fibroblast cells. For example, levels of several ceramides were significantly increased in FRDA fibroblast cells; these results positively correlated with the GAA repeat length and negatively correlated with the frataxin protein levels. Furthermore, stable isotope tracing experiments indicated increased ceramide synthesis, especially for long-chain fatty acid-ceramides, in FRDA fibroblast cells compared with ceramide synthesis in healthy control fibroblast cells. In addition, PUFA-containing triglycerides and phosphatidylglycerols were enriched in FRDA fibroblast cells and negatively correlated with frataxin levels, suggesting lipid remodeling as a result of FXN deficiency. Altogether, we demonstrate patient-derived fibroblast cells exhibited dysregulated metabolic capabilities, and their lipid dysfunction predicted the severity of FRDA, making them a useful surrogate to study the metabolic status in FRDA.


Assuntos
Ataxia de Friedreich , Ácido 3-Hidroxibutírico , Adenina/metabolismo , Carnitina/metabolismo , Ceramidas/metabolismo , Coenzima A/metabolismo , Fibroblastos/metabolismo , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Guanina/metabolismo , Humanos , Ferro/metabolismo , Fosfatidilgliceróis , Enxofre/metabolismo , Triglicerídeos/metabolismo
8.
Opt Express ; 30(10): 17164-17173, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221545

RESUMO

The possibility to perform distributed measurements of the effective refractive index difference between distinct modes in few mode optical fibers is demonstrated using phase sensitive optical time domain reflectometry. Effective refractive index differences between LP02, LP21a and LP21b modes are measured with for a spatial resolution of 24m.

9.
RNA Biol ; 19(1): 364-372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35289725

RESUMO

Friedreich's ataxia (FA) is an inherited neurodegenerative disorder caused by decreased expression of frataxin (FXN) protein. Previous studies have shown that antisense oligonucleotides (ASOs) and single-stranded silencing RNAs can be used to increase expression of frataxin in cultured patient-derived cells. In this study, we investigate the potential for oligonucleotides to increase frataxin expression in a mouse model for FA. After confirming successful in vivo delivery of oligonucleotides using a benchmark gapmer targeting the nuclear noncoding RNA Malat1, we tested anti-FXN oligonucleotides designed to function by various mechanisms. None of these strategies yielded enhanced expression of FXN in the model mice. Our inability to translate activation of FXN expression from cell culture to mice may be due to inadequate potency of our compounds or differences in the molecular mechanisms governing FXN gene repression and activation in FA model mice.


Assuntos
Ataxia de Friedreich , Proteínas de Ligação ao Ferro , Animais , Técnicas de Cultura de Células , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Camundongos , Oligonucleotídeos , RNA , Frataxina
10.
RNA ; 25(9): 1118-1129, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31151992

RESUMO

Oligonucleotide drugs are experiencing greater success in the clinic, encouraging the initiation of new projects. Resources are insufficient to develop every potentially important project, and persuasive experimental data using cell lines close to disease target tissue is needed to prioritize candidates. Friedreich's ataxia (FRDA) is a devastating and currently incurable disease caused by insufficient expression of the enzyme frataxin (FXN). We have previously shown that synthetic nucleic acids can activate FXN expression in human patient-derived fibroblast cells. We chose to further test these compounds in induced pluripotent stem cell-derived neuronal progenitor cells (iPSC-NPCs). Here we describe methods to deliver oligonucleotides and duplex RNAs into iPSC-NPCs using electroporation. Activation of FXN expression is potent, easily reproducible, and potencies parallel those determined using patient-derived fibroblast cells. A duplex RNA and several antisense oligonucleotides (ASOs) with different combinations of 2'-methoxyethyl (2'-MOE), 2'-fluoro (2'-F), and constrained ethyl (cEt) were active, providing multiple starting points for further development and highlighting improved potency as an important goal for preclinical development. Our data support the conclusion that ASO-mediated activation of FXN is a feasible approach for treating FRDA and that electroporation is a robust method for introducing ASOs to modulate gene expressions in neuronal cells.


Assuntos
Proteínas de Ligação ao Ferro/metabolismo , Neurônios/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos/metabolismo , RNA/metabolismo , Linhagem Celular , Eletroporação/métodos , Fibroblastos/metabolismo , Ataxia de Friedreich/metabolismo , Expressão Gênica/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Frataxina
11.
Opt Express ; 29(24): 39137-39149, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809283

RESUMO

In this work, a compact all-fiber bend sensor based on a dual-core microstructured optical fiber has been manufactured and characterized. The sensor relies on the unbalanced Michelson interferometric technique realized by attaching a piece of silica fiber to one of the fiber cores acting as the unbalancing element. Three probes with different lengths of the unbalancing element have been experimentally tested for sensitivity tailoring analysis. Additionally, a theoretical model has been developed for comparison and verification of the results. Good linear behavior of the spectral shift with bend has been measured and it has been proven that the sensitivity of the sensor depends on the length of the unbalancing element and the orientation of the cores. Higher sensitivities are achieved for shorter lengths of the unbalancing element and orientation of the core axis parallel to the bend direction. The highest sensitivity reported is 9.97 pm/µm for the case of 34 µm of unbalancing element and orientation of 0 degrees.

12.
Bioorg Med Chem ; 28(11): 115472, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32279920

RESUMO

Friedreich's Ataxia (FRDA) is an incurable genetic disease caused by an expanded trinucleotide AAG repeat within intronic RNA of the frataxin (FXN) gene. We have previously demonstrated that synthetic antisense oligonucleotides or duplex RNAs that are complementary to the expanded repeat can activate expression of FXN and return levels of FXN protein to near normal. The potency of these compounds, however, was too low to encourage vigorous pre-clinical development. We now report testing of "gapmer" oligonucleotides consisting of a central DNA portion flanked by chemically modified RNA that increases binding affinity. We find that gapmer antisense oligonucleotides are several fold more potent activators of FXN expression relative to previously tested compounds. The potency of FXN activation is similar to a potent benchmark gapmer targeting the nuclear noncoding RNA MALAT-1, suggesting that our approach has potential for developing more effective compounds to regulate FXN expression in vivo.


Assuntos
Descoberta de Drogas , Ataxia de Friedreich/tratamento farmacológico , Proteínas de Ligação ao Ferro/genética , Oligonucleotídeos Antissenso/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Estrutura Molecular , Oligonucleotídeos Antissenso/química , Relação Estrutura-Atividade , Frataxina
13.
Opt Express ; 27(15): 20763-20773, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31510165

RESUMO

In this paper, a highly-sensitive distributed shape sensor based on a multicore fiber (MCF) and phase-sensitive optical time-domain reflectometry (φ-OTDR) is proposed and experimentally demonstrated. The implemented system features a high strain sensitivity (down to ∼0.3 µÉ›) over a 24 m-long MCF with a spatial resolution of 10 cm. The results demonstrate good repeatability of the relative fiber curvature and bend orientation measurements. Changes in the fiber shape are successfully retrieved, showing detectable displacements of the free moving fiber end as small as 50 µm over a 60 cm-long fiber. In addition, the proposed technique overcomes cross-sensitivity issues between strain and temperature. To the best of our knowledge, the results presented in this work provide the first demonstration of distributed shape sensing based on φ-OTDR using MCFs. This high-sensitivity technique proves to be a promising approach for a wide range of new applications such as dynamic, long distance and three-dimensional distributed shape sensing.

14.
Hum Mol Genet ; 24(24): 6932-43, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26401053

RESUMO

Friedreich's ataxia (FRDA) is a severe neurodegenerative disease caused by homozygous expansion of the guanine-adenine-adenine (GAA) repeats in intron 1 of the FXN gene leading to transcriptional repression of frataxin expression. Post-translational histone modifications that typify heterochromatin are enriched in the vicinity of the repeats, whereas active chromatin marks in this region are underrepresented in FRDA samples. Yet, the immediate effect of the expanded repeats on transcription progression through FXN and their long-range effect on the surrounding genomic context are two critical questions that remain unanswered in the molecular pathogenesis of FRDA. To address these questions, we conducted next-generation RNA sequencing of a large cohort of FRDA and control primary fibroblasts. This comprehensive analysis revealed that the GAA-induced silencing effect does not influence expression of neighboring genes upstream or downstream of FXN. Furthermore, no long-range silencing effects were detected across a large portion of chromosome 9. Additionally, results of chromatin immunoprecipitation studies confirmed that histone modifications associated with repressed transcription are confined to the FXN locus. Finally, deep sequencing of FXN pre-mRNA molecules revealed a pronounced defect in the transcription elongation rate in FRDA cells when compared with controls. These results indicate that approaches aimed to reactivate frataxin expression should simultaneously address deficits in transcription initiation and elongation at the FXN locus.


Assuntos
Ataxia de Friedreich/genética , Inativação Gênica , Elongação da Transcrição Genética , Expansão das Repetições de Trinucleotídeos , Adenina , Loci Gênicos , Guanina , Histonas/metabolismo , Proteínas de Ligação ao Ferro , Análise de Sequência de RNA , Frataxina
15.
Opt Lett ; 41(16): 3759-62, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27519082

RESUMO

We discuss the theoretical aspects of core-to-core power transfer in multicore fibers relying on supermode theory. Based on a dual core fiber model, we investigate the consequences of this approach, such as the influence of initial excitation conditions on cross talk. Supermode interpretation of power coupling proves to be intuitive and thus may lead to new concepts of multicore fiber-based devices. As a conclusion, we propose a definition of a uniform cross talk parameter that describes multicore fiber design.

16.
Mol Ther ; 23(6): 1055-1065, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25758173

RESUMO

Friedreich's ataxia (FRDA) is an autosomal recessive neurological disease caused by expansions of guanine-adenine-adenine (GAA) repeats in intron 1 of the frataxin (FXN) gene. The expansion results in significantly decreased frataxin expression. We report that human FRDA cells can be corrected by zinc finger nuclease-mediated excision of the expanded GAA repeats. Editing of a single expanded GAA allele created heterozygous, FRDA carrier-like cells and significantly increased frataxin expression. This correction persisted during reprogramming of zinc finger nuclease-edited fibroblasts to induced pluripotent stem cells and subsequent differentiation into neurons. The expression of FRDA biomarkers was normalized in corrected patient cells and disease-associated phenotypes, such as decreases in aconitase activity and intracellular ATP levels, were reversed in zinc finger nuclease corrected neuronal cells. Genetically and phenotypically corrected patient cells represent not only a preferred disease-relevant model system to study pathogenic mechanisms, but also a critical step towards development of cell replacement therapy.


Assuntos
Adenina/metabolismo , Ataxia de Friedreich/genética , Ataxia de Friedreich/terapia , Guanina/metabolismo , Expansão das Repetições de Trinucleotídeos , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Alelos , Diferenciação Celular , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Fibroblastos/metabolismo , Terapia Genética , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Íntrons , Células K562 , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Dedos de Zinco
17.
Sensors (Basel) ; 15(12): 31888-903, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26694412

RESUMO

Optical fibre carbon dioxide (CO2) sensors are reported in this article. The principle of operation of the sensors relies on the absorption of light transmitted through the fibre by a silica gel coating containing active dyes, including methyl red, thymol blue and phenol red. Stability of the sensor has been investigated for the first time for an absorption based CO2 optical fiber sensor. Influence of the silica gel coating thickness on the sensitivity and response time has also been studied. The impact of temperature and humidity on the sensor performance has been examined too. Response times of reported sensors are very short and reach 2-3 s, whereas the sensitivity of the sensor ranges from 3 to 10 for different coating thicknesses. Reported parameters make the sensor suitable for indoor and industrial use.

18.
RNA Biol ; 11(6): 742-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24824895

RESUMO

Expandable (CTG)n repeats in the 3' UTR of the DMPK gene are a cause of myotonic dystrophy type 1 (DM1), which leads to a toxic RNA gain-of-function disease. Mutant RNAs with expanded CUG repeats are retained in the nucleus and aggregate in discrete inclusions. These foci sequester splicing factors of the MBNL family and trigger upregulation of the CUGBP family of proteins resulting in the mis-splicing of their target transcripts. To date, many efforts to develop novel therapeutic strategies have been focused on disrupting the toxic nuclear foci and correcting aberrant alternative splicing via targeting mutant CUG repeats RNA; however, no effective treatment for DM1 is currently available. Herein, we present results of culturing of human DM1 myoblasts and fibroblasts with two small-molecule ATP-binding site-specific kinase inhibitors, C16 and C51, which resulted in the alleviation of the dominant-negative effects of CUG repeat expansion. Reversal of the DM1 molecular phenotype includes a reduction of the size and number of foci containing expanded CUG repeat transcripts, decreased steady-state levels of CUGBP1 protein, and consequent improvement of the aberrant alternative splicing of several pre-mRNAs misregulated in DM1.


Assuntos
Inibidores Enzimáticos/farmacologia , Distrofia Miotônica/genética , Fosfotransferases/antagonistas & inibidores , Processamento Alternativo , Proteínas CELF1 , Células Cultivadas , Inibidores Enzimáticos/química , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/enzimologia , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Precursores de RNA , Splicing de RNA , RNA Mensageiro , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica
19.
Stem Cell Res ; 79: 103477, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38936158

RESUMO

Friedreich's ataxia (FRDA) is a rare neurodegenerative disease caused by an expansion of a GAA repeat sequence within the Frataxin (FXN) gene. Prominent regions of neurodegeneration include sensory neurons within the dorsal root ganglia. Here we present a set of genetically modified FRDA induced pluripotent stem cell (iPSC) lines that carry an inducible neurogenin-2 (NGN2) expression cassette. Exogenous expression of NGN2 in iPSC derived neural crest progenitors efficiently generates functionally mature sensory neurons. These cell lines will provide a streamlined source of FRDA iPSC sensory neurons for studying both disease mechanism and screening potential therapeutics.

20.
Nat Genet ; 56(7): 1366-1370, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38937606

RESUMO

The factors driving or preventing pathological expansion of tandem repeats remain largely unknown. Here, we assessed the FGF14 (GAA)·(TTC) repeat locus in 2,530 individuals by long-read and Sanger sequencing and identified a common 5'-flanking variant in 70.34% of alleles analyzed (3,463/4,923) that represents the phylogenetically ancestral allele and is present on all major haplotypes. This common sequence variation is present nearly exclusively on nonpathogenic alleles with fewer than 30 GAA-pure triplets and is associated with enhanced stability of the repeat locus upon intergenerational transmission and increased Fiber-seq chromatin accessibility.


Assuntos
Alelos , Fatores de Crescimento de Fibroblastos , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Haplótipos , Variação Genética , Loci Gênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA