Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nucleic Acids Res ; 51(22): 12092-12110, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37889078

RESUMO

Epstein-Barr virus (EBV) establishes lifelong asymptomatic infection by replication of its chromatinized episomes with the host genome. EBV exhibits different latency-associated transcriptional repertoires, each with distinct three-dimensional structures. CTCF, Cohesin and PARP1 are involved in maintaining viral latency and establishing episome architecture. Epstein-Barr virus-associated gastric cancer (EBVaGC) represents 1.3-30.9% of all gastric cancers globally. EBV-positive gastric cancers exhibit an intermediate viral transcription profile known as 'Latency II', expressing specific viral genes and noncoding RNAs. In this study, we investigated the impact of PARP1 inhibition on CTCF/Cohesin binding in Type II latency. We observed destabilization of the binding of both factors, leading to a disrupted three-dimensional architecture of the episomes and an altered viral gene expression. Despite sharing the same CTCF binding profile, Type I, II and III latencies exhibit different 3D structures that correlate with variations in viral gene expression. Additionally, our analysis of H3K27ac-enriched interactions revealed differences between Type II latency episomes and a link to cellular transformation through docking of the EBV genome at specific sites of the Human genome, thus promoting oncogene expression. Overall, this work provides insights into the role of PARP1 in maintaining active latency and novel mechanisms of EBV-induced cellular transformation.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Neoplasias Gástricas , Humanos , Infecções por Vírus Epstein-Barr/virologia , Expressão Gênica , Genoma Viral , Herpesvirus Humano 4/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/virologia , Latência Viral/genética , Regulação Viral da Expressão Gênica
2.
PLoS Pathog ; 17(8): e1009834, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34352044

RESUMO

Viruses suppress immune recognition through diverse mechanisms. Epstein-Barr Virus (EBV) establishes latent infection in memory B-lymphocytes and B-cell malignancies where it impacts B-cell immune function. We show here that EBV primary infection of naïve B-cells results in a robust down-regulation of HLA genes. We found that the viral encoded transcriptional regulatory factor EBNA2 bound to multiple regulatory regions in the HLA locus. Conditional expression of EBNA2 correlated with the down regulation of HLA class II transcription. EBNA2 down-regulation of HLA transcription was found to be dependent on CIITA, the major transcriptional activator of HLA class II gene transcription. We identified a major EBNA2 binding site downstream of the CIITA gene and upstream of DEXI, a dexamethasone inducible gene that is oriented head-to-head with CIITA gene transcripts. CRISPR/Cas9 deletion of the EBNA2 site upstream of DEXI attenuated CIITA transcriptional repression. EBNA2 caused an increase in DEXI transcription and a graded change in histone modifications with activation mark H3K27ac near the DEXI locus, and a loss of activation marks at the CIITA locus. A prominent CTCF binding site between CIITA and DEXI enhancers was mutated and further diminished the effects of EBNA2 on CIITA. Analysis of HiC data indicate that DEXI and CIITA enhancers are situated in different chromosome topological associated domains (TADs). These findings suggest that EBNA2 down regulates HLA-II genes through the down regulation of CIITA, and that this down regulation is an indirect consequence of EBNA2 enhancer formation at a neighboring TAD. We propose that enhancer competition between these neighboring chromosome domains represents a novel mechanism for gene regulation demonstrated by EBNA2.


Assuntos
Linfócitos B/virologia , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Genes MHC da Classe II/fisiologia , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Transativadores/genética , Proteínas Virais/metabolismo , Linfócitos B/metabolismo , Proteínas de Ligação a DNA/metabolismo , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/genética , Regulação da Expressão Gênica , Herpesvirus Humano 4/fisiologia , Humanos , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Transativadores/metabolismo , Proteínas Virais/genética
3.
PLoS Pathog ; 15(3): e1007617, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30870531

RESUMO

Herpes simplex virus type 1 (HSV-1) is a DNA neurotropic virus, usually establishing latent infections in the trigeminal ganglia followed by periodic reactivations. Although numerous findings suggested potential links between HSV-1 and Alzheimer's disease (AD), a causal relation has not been demonstrated yet. Hence, we set up a model of recurrent HSV-1 infection in mice undergoing repeated cycles of viral reactivation. By virological and molecular analyses we found: i) HSV-1 spreading and replication in different brain regions after thermal stress-induced virus reactivations; ii) accumulation of AD hallmarks including amyloid-ß protein, tau hyperphosphorylation, and neuroinflammation markers (astrogliosis, IL-1ß and IL-6). Remarkably, the progressive accumulation of AD molecular biomarkers in neocortex and hippocampus of HSV-1 infected mice, triggered by repeated virus reactivations, correlated with increasing cognitive deficits becoming irreversible after seven cycles of reactivation. Collectively, our findings provide evidence that mild and recurrent HSV-1 infections in the central nervous system produce an AD-like phenotype and suggest that they are a risk factor for AD.


Assuntos
Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/virologia , Herpesvirus Humano 1/patogenicidade , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides , Animais , Encéfalo/virologia , Cognição/fisiologia , Transtornos Cognitivos/etiologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/virologia , Modelos Animais de Doenças , Feminino , Herpesvirus Humano 1/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/virologia , Gânglio Trigeminal/virologia , Ativação Viral/fisiologia , Replicação Viral/fisiologia
4.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208020

RESUMO

Herpes simplex virus 1 (HSV-1) is a widespread neurotropic virus establishing a life-long latent infection in neurons with periodic reactivations. Recent studies linked HSV-1 to neurodegenerative processes related to age-related disorders such as Alzheimer's disease. Here, we explored whether recurrent HSV-1 infection might accelerate aging in neurons, focusing on peculiar marks of aged cells, such as the increase in histone H4 lysine (K) 16 acetylation (ac) (H4K16ac); the decrease of H3K56ac, and the modified expression of Sin3/HDAC1 and HIRA proteins. By exploiting both in vitro and in vivo models of recurrent HSV-1 infection, we found a significant increase in H4K16ac, Sin3, and HDAC1 levels, suggesting that the neuronal response to virus latency and reactivation includes the upregulation of these aging markers. On the contrary, we found a significant decrease in H3K56ac that was specifically linked to viral reactivation and apparently not related to aging-related markers. A complex modulation of HIRA expression and localization was found in the brain from HSV-1 infected mice suggesting a specific role of this protein in viral latency and reactivation. Overall, our results pointed out novel molecular mechanisms through which recurrent HSV-1 infection may affect neuronal aging, likely contributing to neurodegeneration.


Assuntos
Senescência Celular , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Modelos Biológicos , Neurônios/patologia , Neurônios/virologia , Acetilação , Animais , Proteínas de Ciclo Celular/metabolismo , Modelos Animais de Doenças , Chaperonas de Histonas/metabolismo , Histona Desacetilase 1/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Ratos Wistar , Recidiva , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo , Fatores de Transcrição/metabolismo , Latência Viral
5.
bioRxiv ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461649

RESUMO

PARP1 has been shown to regulate EBV latency. However, the therapeutic effect of PARP1 inhibitors on EBV+ lymphomagenesis has not yet been explored. Here, we show that PARPi BMN-673 has a potent anti-tumor effect on EBV-driven LCL in a mouse xenograft model. We found that PARP1 inhibition induces a dramatic transcriptional reprogramming of LCLs driven largely by the reduction of the MYC oncogene expression and dysregulation of MYC targets, both in vivo and in vitro. PARP1 inhibition also reduced the expression of viral oncoprotein EBNA2, which we previously demonstrated depends on PARP1 for activation of MYC. Further, we show that PARP1 inhibition blocks the chromatin association of MYC, EBNA2, and tumor suppressor p53. Overall, our study strengthens the central role of PARP1 in EBV malignant transformation and identifies the EBNA2/MYC pathway as a target of PARP1 inhibitors and its utility for the treatment of EBNA2-driven EBV-associated cancers.

6.
mBio ; 14(5): e0039623, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37606370

RESUMO

IMPORTANCE: Epstein-Barr virus (EBV) latency is controlled by epigenetic silencing by DNA methylation [5-methyl cytosine (5mC)], histone modifications, and chromatin looping. However, how they dictate the transcriptional program in EBV-associated gastric cancers remains incompletely understood. EBV-associated gastric cancer displays a 5mC hypermethylated phenotype. A potential treatment for this cancer subtype is the DNA hypomethylating agent, which induces EBV lytic reactivation and targets hypermethylation of the cellular DNA. In this study, we identified a heterogeneous pool of EBV epialleles within two tumor-derived gastric cancer cell lines that are disrupted with a hypomethylating agent. Stochastic DNA methylation patterning at critical regulatory regions may be an underlying mechanism for spontaneous reactivation. Our results highlight the critical role of epigenetic modulation on EBV latency and life cycle, which is maintained through the interaction between 5mC and the host protein CCCTC-binding factor.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Gástricas , Humanos , Cromatina , Herpesvirus Humano 4/fisiologia , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Metilação de DNA , Decitabina/metabolismo , Latência Viral/genética , DNA/metabolismo , Genômica , Sítios de Ligação
7.
J Neuropathol Exp Neurol ; 80(3): 265-273, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33598674

RESUMO

Rett syndrome (RTT) is a rare neurological disorder caused by mutations in the X-linked MECP2 gene, characterized by severe behavioral and physiological impairments for which no cure is available. The stimulation of serotonin receptor 7 (5-HT7R) with its selective agonist LP-211 (0.25 mg/kg/day for 7 days) was proved to rescue neurobehavioral alterations in a mouse model of RTT. In the present study, we aimed at gaining insight into the mechanisms underpinning the efficacy of 5-HT7R pharmacological stimulation by investigating its epigenetic outcomes in the brain of RTT female mice bearing a truncating MeCP2 mutation. Treatment with LP-211 normalized the reduced histone H3 acetylation and HDAC3/NCoR levels, and increased HDAC1/Sin3a expression in RTT mouse cortex. Repeated 5-HT7R stimulation also appeared to strengthen the association between NCoR and MeCP2 in the same brain region. A different profile was found in RTT hippocampus, where LP-211 rescued H3 hyperacetylation and increased HDAC3 levels. Overall, the present data highlight a new scenario on the relationship between histone acetylation and serotoninergic pathways. 5-HT7R is confirmed as a pivotal therapeutic target for the recovery of neuronal function supporting the translational value of this promising pharmacological approach for RTT.


Assuntos
Encéfalo/metabolismo , Modelos Animais de Doenças , Histonas/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Receptores de Serotonina/metabolismo , Síndrome de Rett/metabolismo , Acetilação , Animais , Encéfalo/efeitos dos fármacos , Feminino , Histonas/genética , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/genética , Agonistas do Receptor de Serotonina/farmacologia , Agonistas do Receptor de Serotonina/uso terapêutico
8.
Trends Microbiol ; 28(10): 808-820, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32386801

RESUMO

Herpes simplex virus-1 (HSV-1) establishes latency preferentially in sensory neurons of peripheral ganglia. A variety of stresses can induce recurrent reactivations of the virus, which spreads and then actively replicates to the site of primary infection (usually the lips or eyes). Viral particles produced following reactivation can also reach the brain, causing a rare but severe form of diffuse acute infection, namely herpes simplex encephalitis. Most of the time, this infection is clinically asymptomatic. However, it was recently correlated with the production and accumulation of neuropathological biomarkers of Alzheimer's disease. In this review we discuss the different cellular and molecular mechanisms underlying the acute and long-term damage caused by HSV-1 infection in the brain.


Assuntos
Encefalopatias/virologia , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Animais , Encéfalo/virologia , Herpesvirus Humano 1/genética , Humanos
9.
Microorganisms ; 8(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610629

RESUMO

Compelling evidence supports the role of oxidative stress in Alzheimer's disease (AD) pathophysiology. Interestingly, Herpes simplex virus-1 (HSV-1), a neurotropic virus that establishes a lifelong latent infection in the trigeminal ganglion followed by periodic reactivations, has been reportedly linked both to AD and to oxidative stress conditions. Herein, we analyzed, through biochemical and redox proteomic approaches, the mouse model of recurrent HSV-1 infection we previously set up, to investigate whether multiple virus reactivations induced oxidative stress in the mouse brain and affected protein function and related intracellular pathways. Following multiple HSV-1 reactivations, we found in mouse brains increased levels of oxidative stress hallmarks, including 4-hydroxynonenal (HNE), and 13 HNE-modified proteins whose levels were found significantly altered in the cortex of HSV-1-infected mice compared to controls. We focused on two proteins previously linked to AD pathogenesis, i.e., glucose-regulated protein 78 (GRP78) and collapsin response-mediated protein 2 (CRMP2), which are involved in the unfolded protein response (UPR) and in microtubule stabilization, respectively. We found that recurrent HSV-1 infection disables GRP78 function and activates the UPR, whereas it prevents CRMP2 function in mouse brains. Overall, these data suggest that repeated HSV-1 reactivation into the brain may contribute to neurodegeneration also through oxidative damage.

10.
Acta Diabetol ; 54(9): 833-842, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28608282

RESUMO

AIMS: In diabetes, hyperglycemia increases reactive oxygen species that induce DNA damage and poly(ADP-ribose)polymerase activation. The aim of this study is to characterize the proteomic profile and the role of poly(ADP-ribosylation) in patients with type 2 diabetes. METHODS: A proteomic platform based on 2DE and MALDI-ToF spectrometry was applied to peripheral blood mononuclear cells obtained from two different cohorts in which diabetic (n = 14) and normoglycemic patients (n = 11) were enrolled. RESULTS: Proteomic maps identified WD repeat protein, 78-kDa glucose-regulated protein precursor and myosin regulatory light chain 2, as unique proteins in diabetic patients; vimentin, elongation factor 2, annexin A1, glutathione S-transferase P, moesin and cofilin-1 as unique in the normoglycemic; and calreticulin, rho GDP-dissociation inhibitor 2, protein disulfide isomerase and tropomyosin alpha-4-chain as differentially expressed between the two cohorts. An enrichment in PARylation in diabetic patients was observed in particular, affecting GAPDH and α-Enolase leading to a decrease in their enzymatic activity. CONCLUSIONS: As the GAPDH and α-Enolase are involved in energy metabolism, protein synthesis and DNA repair, loss of their function or change in their activity can significantly contribute to the molecular mechanisms responsible for the development of type 2 diabetes. These data along with the proteomic profile associated with the disease may provide new insight into the pathophysiology of type 2 diabetes.


Assuntos
ADP-Ribosilação , Diabetes Mellitus Tipo 2/metabolismo , Leucócitos Mononucleares/metabolismo , Idoso , Animais , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/sangue , Feminino , Humanos , Hiperglicemia/sangue , Hiperglicemia/metabolismo , Masculino , Pessoa de Meia-Idade , Proteômica , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA