Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562639

RESUMO

A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal. The design and development of biosensors have taken a center stage for researchers or scientists in the recent decade owing to the wide range of biosensor applications, such as health care and disease diagnosis, environmental monitoring, water and food quality monitoring, and drug delivery. The main challenges involved in the biosensor progress are (i) the efficient capturing of biorecognition signals and the transformation of these signals into electrochemical, electrical, optical, gravimetric, or acoustic signals (transduction process), (ii) enhancing transducer performance i.e., increasing sensitivity, shorter response time, reproducibility, and low detection limits even to detect individual molecules, and (iii) miniaturization of the biosensing devices using micro-and nano-fabrication technologies. Those challenges can be met through the integration of sensing technology with nanomaterials, which range from zero- to three-dimensional, possessing a high surface-to-volume ratio, good conductivities, shock-bearing abilities, and color tunability. Nanomaterials (NMs) employed in the fabrication and nanobiosensors include nanoparticles (NPs) (high stability and high carrier capacity), nanowires (NWs) and nanorods (NRs) (capable of high detection sensitivity), carbon nanotubes (CNTs) (large surface area, high electrical and thermal conductivity), and quantum dots (QDs) (color tunability). Furthermore, these nanomaterials can themselves act as transduction elements. This review summarizes the evolution of biosensors, the types of biosensors based on their receptors, transducers, and modern approaches employed in biosensors using nanomaterials such as NPs (e.g., noble metal NPs and metal oxide NPs), NWs, NRs, CNTs, QDs, and dendrimers and their recent advancement in biosensing technology with the expansion of nanotechnology.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Nanotecnologia , Nanotubos de Carbono , Reprodutibilidade dos Testes
2.
ACS Appl Mater Interfaces ; 16(15): 19068-19080, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587167

RESUMO

Rare-earth-based double perovskite (DP) X-ray scintillators have gained significant importance with low detection limits in medical imaging and radiation detection owing to their high light yield (LY) and remarkable spatial resolution. Herein, we report the synthesis of 3D double perovskite (DP) crystals, namely, Cs2NaGdCl6 and Tb3+-Cs2NaGdCl6 using hydrothermal reaction. Cs2NaGdCl6 DP single crystals exhibited a blue self-trapped exciton (STE) emission at 470 nm under ultraviolet (265 nm) excitation with a photoluminescence quantum yield (PLQY) of 8.4%. Introducing Tb3+ ions into Cs2NaGdCl6 has resulted in quenching of STE emission and enhancing green emission at 549 nm attributed to the 5D4 → 7F5 transition of Tb3+, suggesting efficient energy transfer (ET) from STE to Tb3+. This ET process is evidenced by the appearance of Tb3+ bands in the excitation spectra of the host, the shortening of the STE lifetimes in the presence of Tb3+ ions, and the enhancement of PLQY (72.6%). Furthermore, Cs2NaGdCl6:5%Tb3+ films of various thicknesses (0.1-0.6 mm) were synthesized and their X-ray scintillating performance has been examined. The Cs2NaGdCl6:5%Tb3+ film with 0.4 mm thickness has exhibited an excellent linear response to the X-ray dose rate with a low detection limit of 41.32 nGyair s-1, an LY of 39,100 photons MeV-1, and excellent radiation stability. Benefiting from the strong X-ray excited luminescence (XEL) of Cs2NaGdCl6:5%Tb3+, we developed a Cs2NaGdCl6:5%Tb3+ X-ray scintillator screen with a least thickness (0.1 mm), exhibiting remarkable imaging ability with a spatial resolution of 10.75 lp mm-1. These results suggest that Cs2NaGdCl6:Tb3+ can be a potential candidate for low-dose and X-ray imaging applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA