Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cancer Sci ; 115(5): 1634-1645, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38411285

RESUMO

The urinary catecholamine metabolites, homovanillic acid (HVA) and vanillylmandelic acid (VMA), are used for the adjunctive diagnosis of neuroblastomas. We aimed to develop a scoring system for the diagnosis and pretreatment risk assessment of neuroblastoma, incorporating age and other urinary catecholamine metabolite combinations. Urine samples from 227 controls (227 samples) and 68 patients with neuroblastoma (228 samples) were evaluated. First, the catecholamine metabolites vanillactic acid (VLA) and 3-methoxytyramine sulfate (MTS) were identified as urinary marker candidates through comprehensive analysis using liquid chromatography-mass spectrometry. The concentrations of these marker candidates and conventional markers were then compared among controls, patients, and numerous risk groups to develop a scoring system. Participants were classified into four groups: control, low risk, intermediate risk, and high risk, and the proportional odds model was fitted using the L2-penalized maximum likelihood method, incorporating age on a monthly scale for adjustment. This scoring model using the novel urine catecholamine metabolite combinations, VLA and MTS, had greater area under the curve values than the model using HVA and VMA for diagnosis (0.978 vs. 0.964), pretreatment risk assessment (low and intermediate risk vs. high risk: 0.866 vs. 0.724; low risk vs. intermediate and high risk: 0.871 vs. 0.680), and prognostic factors (MYCN status: 0.741 vs. 0.369, histology: 0.932 vs. 0.747). The new system also had greater accuracy in detecting missing high-risk neuroblastomas, and in predicting the pretreatment risk at the time of screening. The new scoring system employing VLA and MTS has the potential to replace the conventional adjunctive diagnostic method using HVA and VMA.


Assuntos
Biomarcadores Tumorais , Ácido Homovanílico , Neuroblastoma , Ácido Vanilmandélico , Humanos , Neuroblastoma/urina , Neuroblastoma/diagnóstico , Masculino , Feminino , Medição de Risco , Pré-Escolar , Biomarcadores Tumorais/urina , Lactente , Ácido Homovanílico/urina , Ácido Vanilmandélico/urina , Criança , Catecolaminas/urina , Estudos de Casos e Controles , Dopamina/urina , Dopamina/análogos & derivados , Cromatografia Líquida
2.
J Clin Immunol ; 44(4): 103, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642164

RESUMO

Epstein-Barr virus (EBV) infection can lead to infectious mononucleosis (EBV-IM) and, more rarely, EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), which is characterized by a life-threatening hyperinflammatory cytokine storm with immune dysregulation. Interferon-gamma (IFNγ) has been identified as a critical mediator for primary HLH; however, the detailed role of IFNγ and other cytokines in EBV-HLH is not fully understood. In this study, we used single-cell RNA sequencing to characterize the immune landscape of EBV-HLH and compared it with EBV-IM. Three pediatric patients with EBV-HLH with different backgrounds, one with X-linked lymphoproliferative syndrome type 1 (XLP1), two with chronic active EBV disease (CAEBV), and two patients with EBV-IM were enrolled. The TUBA1B + STMN1 + CD8 + T cell cluster, a responsive proliferating cluster with rich mRNA detection, was explicitly observed in EBV-IM, and the upregulation of SH2D1A-the gene responsible for XLP1-was localized in this cluster. This proliferative cluster was scarcely observed in EBV-HLH cases. In EBV-HLH cases with CAEBV, upregulation of LAG3 was observed in EBV-infected cells, which may be associated with an impaired response by CD8 + T cells. Additionally, genes involved in type I interferon (IFN) signaling were commonly upregulated in each cell fraction of EBV-HLH, and activation of type II IFN signaling was observed in CD4 + T cells, natural killer cells, and monocytes but not in CD8 + T cells in EBV-HLH. In conclusion, impaired responsive proliferation of CD8 + T cells and upregulation of type I IFN signaling were commonly observed in EBV-HLH cases, regardless of the patients' background, indicating the key features of EBV-HLH.


Assuntos
Infecções por Vírus Epstein-Barr , Linfo-Histiocitose Hemofagocítica , Transtornos Linfoproliferativos , Humanos , Criança , Herpesvirus Humano 4 , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Linfócitos T CD8-Positivos , Interferon gama/genética , Transtornos Linfoproliferativos/diagnóstico , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/complicações , Perfilação da Expressão Gênica
3.
New Microbiol ; 47(1): 52-59, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38700884

RESUMO

Monitoring Epstein-Barr virus (EBV) and cytomegalovirus (CMV) infection after transplantation is recommended to enable preemptive therapy. However, the most suitable sample type remains unclear. Patients who underwent hematopoietic stem cell or liver transplantation were included in this study. Viral loads in sequential whole-blood and plasma samples were retrospectively analyzed. EBV DNA was detected more frequently in whole blood (55%) than in plasma (18%). The detection rate of CMV DNA was similar between the two sample types. The correlation of viral loads between the two sample types were 0.515 and 0.688 for EBV and CMV, respectively. Among paired samples in which EBV DNA was detected in whole blood, the plasma EBV detection rate was significantly higher in patients who underwent hematopoietic stem cell transplantation than in those who underwent liver transplantation. The viral DNA load in whole blood and plasma showed similar trends. The EBV detection rate was higher in whole blood, and a high correlation was observed between CMV DNA loads and whole blood and plasma. These results indicate that whole blood is more sensitive for monitoring both EBV and CMV, whereas plasma is a potential alternative sample for monitoring CMV.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Carga Viral , Humanos , Citomegalovirus/genética , Citomegalovirus/isolamento & purificação , Infecções por Citomegalovirus/virologia , Infecções por Citomegalovirus/sangue , Infecções por Citomegalovirus/diagnóstico , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/isolamento & purificação , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/sangue , Infecções por Vírus Epstein-Barr/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , DNA Viral/sangue , Adulto Jovem , Transplante de Células-Tronco Hematopoéticas , Idoso , Plasma/virologia , Transplante de Fígado , Adolescente
5.
Vaccine ; 42(11): 2927-2932, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38548526

RESUMO

BACKGROUND: The introduction of varicella vaccines into routine pediatric immunization programs has led to a considerable reduction in varicella incidence. However, there have been reports of varicella, herpes zoster, and meningitis caused by the vaccine strain of varicella-zoster virus (VZV), raising concerns. Establishing the relationship between the wild-type and vaccine strains in VZV infections among previously vaccinated individuals is crucial. Differences in the single nucleotide polymorphisms (SNPs) among vaccine strains can be utilized to identify the strain. In this study, we employed nanopore sequencing to identify VZV strains and analyzed clinical samples. METHODS: We retrospectively examined vesicle and cerebrospinal fluid samples from patients with VZV infections. One sample each of the wild-type and vaccine strains, previously identified using allelic discrimination real-time PCR and direct sequencing, served as controls. Ten samples with undetermined VZV strains were included. After DNA extraction, a long PCR targeting the VZV ORF62 region was executed. Nanopore sequencing identified SNPs, allowing discrimination between the vaccine and wild-type strains. RESULTS: Nanopore sequencing confirmed SNPs at previously reported sites (105,705, 106,262, 107,136, and 107,252), aiding in distinguishing between wild-type and vaccine strains. Among the ten unknown samples, nine were characterized as wild strains and one as a vaccine strain. Even in samples with low VZV DNA levels, nanopore sequencing was effective in strain identification. CONCLUSION: This study validates that nanopore sequencing is a reliable method for differentiating between the wild-type and vaccine strains of VZV. Its ability to produce long-read sequences is remarkable, allowing simultaneous confirmation of known SNPs and the detection of new mutations. Nanopore sequencing can serve as a valuable tool for the swift and precise identification of wild-type and vaccine strains and has potential applications in future VZV surveillance.


Assuntos
Varicela , Herpes Zoster , Sequenciamento por Nanoporos , Humanos , Criança , Herpesvirus Humano 3/genética , Estudos Retrospectivos , Polimorfismo de Fragmento de Restrição , Reação em Cadeia da Polimerase/métodos , Vacina contra Varicela/genética , Herpes Zoster/prevenção & controle , DNA Viral/genética
6.
PLoS One ; 19(8): e0308395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39110739

RESUMO

Allogeneic hematopoietic cell transplantation (HCT) is a crucial treatment for various diseases, including hematological malignancies, solid tumors, and genetic disorders. Despite its curative potential, HCT is associated with severe complications, notably infections, graft-versus-host disease, and organ damage. Infections, particularly bloodstream infections (BSIs), pose a significant threat in the initial weeks post-HCT, necessitating effective management strategies. This retrospective study aimed to clarify the incidence, pathogens, and risk factors associated with BSI within the first 30 days after allogeneic HCT in children/adolescents and young adults (AYAs). The study included 115 patients aged <31 years who underwent 121 allogeneic HCTs at the Department of Pediatrics, Nagoya University Hospital between January 1, 2018, and March 31, 2022. Data encompassed demographic characteristics, HCT details, and BSI information. Overall, 27 of 121 patients developed BSI with the cumulative incidence of 23.5% (95% confidence intervals [CI]: 17.0%-30.6%) at 30 days after HCT. The median onset time of BSI was 7 (range, 4-26 days) after HCT. Gram-positive bacteria accounted for 89% of pathogens isolated from blood cultures, with Streptococcus mitis/oralis being the most common. In multivariable analysis, tandem HCT (subdistribution hazard ratio [SHR]: 5.67, 95% CI: 2.74-11.7, p < 0.001) and peripherally inserted central catheters (SHR: 2.96, 95% CI: 1.34-6.55, p = 0.007) were identified as independent risk factors for BSI. In patients receiving tandem HCT, the pathogens isolated from blood cultures were all gram-positive bacteria, with Streptococcus mitis/oralis accounting for up to 67% of the isolated pathogens. Tandem HCT and PICCs were identified as independent risk factors for BSI after allogeneic HCT in children/AYAs. The pathogens were commonly gram-positive, and Streptococcus mitis/oralis is important in patients who received tandem HCT. These data can provide valuable information for future studies to consider effective interventions to reduce the risk of BSI in high-risk patients.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Masculino , Feminino , Criança , Adolescente , Fatores de Risco , Adulto Jovem , Adulto , Pré-Escolar , Estudos Retrospectivos , Lactente , Transplante Homólogo/efeitos adversos , Incidência , Bacteriemia/epidemiologia , Bacteriemia/etiologia , Bacteriemia/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA