Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Foodborne Pathog Dis ; 16(3): 205-213, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30481054

RESUMO

To evaluate the Salmonella prevalence and its antimicrobial susceptibility in dual-purpose cattle farms, fecal (n = 3964; from cows and calves) and environmental samples (n = 334; personnel, feed, and water sources) were collected over a 1-year period at six farms in the eastern region of Zulia State, Venezuela. Salmonella detection was carried out using standard microbiological culture methods. From 453 isolated Salmonella, antimicrobial susceptibility was tested using a panel of 10 antibiotics by the disk diffusion test method. Overall, the prevalence of Salmonella at the farm was 10.4% (n = 410/3964), being positive for Salmonella in at least in one sample. Salmonella was found in 11% (222/2009) of cows and 9.7% (188/1937) of calves. The prevalence of environmental samples was 10.78% (36/334), where water sources and milkers' hands showed higher occurrence (p < 0.01). Among the Salmonella isolates recovered, 10.2% displayed resistance to tetracyclines, aminoglycosides, cephalosporins, penicillins, sulfonamides, quinolones and fluoroquinolones. Overall, multidrug resistance was 9.1%, and the most common combination was cephalothin-gentamicin-tetracycline, followed by gentamicin-norfloxacin-tetracycline. Over the course of this study, it was found that 100% of the evaluated farms had cattle shedding Salmonella and that the surrounding farm environments were contaminated, which contributed to the cycling of the pathogen at the farms and further contamination of the milk. However, only a low percentage of isolates exhibited significant antimicrobial resistance.


Assuntos
Antibacterianos/farmacologia , Doenças dos Bovinos/microbiologia , Farmacorresistência Bacteriana Múltipla , Salmonelose Animal/epidemiologia , Salmonella/isolamento & purificação , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Cefalosporinas/farmacologia , Fazendas , Fezes/microbiologia , Feminino , Gentamicinas/farmacologia , Testes de Sensibilidade Microbiana/veterinária , Leite , Prevalência , Tetraciclina/farmacologia , Venezuela/epidemiologia
2.
Foodborne Pathog Dis ; 14(2): 59-73, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27992253

RESUMO

Many public venues such as farms, fairs, and petting zoos encourage animal contact for both educational and entertainment purposes. However, healthy farm animals, including cattle, small ruminants, and poultry, can be reservoirs for enteric zoonotic pathogens, with human infections resulting in nausea, vomiting, diarrhea, and, in some cases, severe complications that can lead to death. As animals shed these organisms in their feces, contamination of themselves and their surroundings is unavoidable. The majority of North Americans reside in urban and suburban settings, and the general public often possess limited knowledge of agricultural practices and minimal contact with farm animals. Furthermore, there is a lack of understanding of zoonotic pathogens, particularly how these pathogens are spread and the human behaviors that may increase the risk of infection. Human risk behaviors include hand-to-mouth contact immediately after physical contact with animals and their environments, a practice that facilitates the ingestion of pathogens. It is often young children who become ill due to their under-developed immune systems and poorer hygienic practices compared with adults, such as more frequent hand-to-mouth behaviors, and infrequent or improper hand washing. These illnesses are often preventable, simply through adequate hygiene and hand washing. Our objective was to use a structured approach to review the main causal organisms responsible for human illnesses acquired in petting zoo and open farm environments, Shiga toxin-producing Escherichia coli, nontyphoidal Salmonella, Campylobacter, and Cryptosporidium. Notable outbreaks involving direct contact with farm animals and farm, fair, or petting zoo environments are discussed and recommendations for how public venues can increase safety and hand hygiene compliance among visitors are proposed. The most effective protective measures against enteric illnesses include education of the public, increasing overall awareness of the risks and the importance of hand hygiene, as well as access to hand-washing facilities.


Assuntos
Animais Domésticos/microbiologia , Animais Domésticos/parasitologia , Fazendas , Zoonoses/epidemiologia , Zoonoses/microbiologia , Animais , Anti-Infecciosos/farmacologia , Antiprotozoários/farmacologia , Campylobacter/efeitos dos fármacos , Campylobacter/isolamento & purificação , Cryptosporidium/efeitos dos fármacos , Cryptosporidium/isolamento & purificação , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Fezes/microbiologia , Fezes/parasitologia , Desinfecção das Mãos , Interações Hospedeiro-Patógeno , Humanos , Fatores de Risco , Salmonella/efeitos dos fármacos , Salmonella/isolamento & purificação , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Escherichia coli Shiga Toxigênica/isolamento & purificação
3.
Front Microbiol ; 15: 1360645, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633705

RESUMO

This study aimed to investigate the impact of temperature and the presence of other microorganisms on the susceptibility of STEC to biocides. Mature biofilms were formed at both 10°C and 25°C. An inoculum of planktonic bacteria comprising 106 CFU/mL of spoilage bacteria and 103 CFU/mL of a single E. coli strain (O157, O111, O103, and O12) was used to form mixed biofilms. The following bacterial combinations were tested: T1: Carnobacterium piscicola + Lactobacillus bulgaricus + STEC, T2: Comamonas koreensis + Raoultella terrigena + STEC, and T3: Pseudomonas aeruginosa + C. koreensis + STEC. Tested biocides included quaternary ammonium compounds (Quats), sodium hypochlorite (Shypo), sodium hydroxide (SHyd), hydrogen peroxide (HyP), and BioDestroy®-organic peroxyacetic acid (PAA). Biocides were applied to 6-day-old biofilms. Minimum Bactericidal Concentrations (MBC) and Biofilm Eradication Concentrations (BEC) were determined. Planktonic cells and single-species biofilms exhibited greater susceptibility to sanitizers (p < 0.0001). Lactobacillus and Carnobacterium were more susceptible than the rest of the tested bacteria (p < 0.0001). Single species biofilms formed by E. coli O111, O121, O157, and O45 showed resistance (100%) to Shypo sanitizer (200 ppm) at 25°C. From the most effective to the least effective, sanitizer performance on single-species biofilms was PAA > Quats > HyP > SHyd > Shypo. In multi-species biofilms, spoilage bacteria within T1, T2, and T3 biofilms showed elevated resistance to SHyd (30%), followed by quats (23.25%), HyP (15.41%), SHypo (9.70%), and BioDestroy® (3.42%; p < 0.0001). Within T1, T2, and T3, the combined STEC strains exhibited superior survival to Quats (23.91%), followed by HyP (19.57%), SHypo (18.12%), SHyd (16.67%), and BioDestroy® (4.35%; p < 0.0001). O157:H7-R508 strains were less tolerant to Quats and Shypo when combined with T2 and T3 (p < 0.0001). O157:H7 and O103:H2 strains in mixed biofilms T1, T2, and T3 exhibited higher biocide resistance than the weak biofilm former, O145:H2 (p < 0.0001). The study shows that STEC within multi-species biofilms' are more tolerant to disinfectants.

4.
Front Microbiol ; 14: 1333696, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38322759

RESUMO

Meat production is a complex system, continually receiving animals, water, air, and workers, all of which serve as carriers of bacteria. Selective pressures involved in different meat processing stages such as antimicrobial interventions and low temperatures, may promote the accumulation of certain residential microbiota in meat cutting facilities. Bacteria including human pathogens from all these sources can contaminate meat surfaces. While significant advancements have been made in enhancing hygienic standards and pathogen control measures in meat plants, resulting in a notable reduction in STEC recalls and clinical cases, STEC still stands as a predominant contributor to foodborne illnesses associated with beef and occasionally with pork. The second-and third-generation sequencing technology has become popular in microbiota related studies and provided a better image of the microbial community in the meat processing environments. In this article, we reviewed the potential factors influencing the microbial ecology in commercial meat processing facilities and conducted a meta-analysis on the microbiota data published in the last 10 years. In addition, the mechanisms by which bacteria persist in meat production environments have been discussed with a focus on the significant human pathogen E. coli O157:H7 and generic E. coli, an indicator often used for the hygienic condition in food production.

5.
Foods ; 12(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37509826

RESUMO

Foodborne illness is exacerbated by novel and emerging pathotypes, persistent contamination, antimicrobial resistance, an ever-changing environment, and the complexity of food production systems. Sporadic and outbreak events of common foodborne pathogens like Shiga toxigenic E. coli (STEC), Salmonella, Campylobacter, and Listeria monocytogenes are increasingly identified. Methods of controlling human infections linked with food products are essential to improve food safety and public health and to avoid economic losses associated with contaminated food product recalls and litigations. Bacteriophages (phages) are an attractive additional weapon in the ongoing search for preventative measures to improve food safety and public health. However, like all other antimicrobial interventions that are being employed in food production systems, phages are not a panacea to all food safety challenges. Therefore, while phage-based biocontrol can be promising in combating foodborne pathogens, their antibacterial spectrum is generally narrower than most antibiotics. The emergence of phage-insensitive single-cell variants and the formulation of effective cocktails are some of the challenges faced by phage-based biocontrol methods. This review examines phage-based applications at critical control points in food production systems with an emphasis on when and where they can be successfully applied at production and processing levels. Shortcomings associated with phage-based control measures are outlined together with strategies that can be applied to improve phage utility for current and future applications in food safety.

6.
Front Microbiol ; 13: 863778, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711784

RESUMO

Interactions of Shiga toxin-producing E. coli (STEC; O103:H2) with lactic acid bacteria (LAB) or spoilage bacteria (SP) multispecies biofilms on polyurethane (TPU) and stainless-steel (SS) were assessed at 10 and 25°C under wet and dry conditions after 6, 30, and 60 days of storage. One LAB T1: Carnobacterium piscicola + Lactobacillus bulgaricus, and two SP T2: Comamonas koreensis + Raoultella terrigena; T3: Pseudomonas aeruginosa + C. koreensis were assessed for their ability to form multispecies biofilms with O103:H2. O103:H2 single-species biofilms served as a control positive (T4). Coupons were stored dry (20-50% relative humidity; RH) or moist (60-90% RH) for up to 60 days, at which point O103:H2 transfer to beef and survival was evaluated. At 25°C, T3 decreased beef contamination with O103:H2 by 2.54 log10 CFU/g (P < 0.001). Overall, at 25°C contamination of beef with O103:H2 decreased (P < 0.001) from 3.17 log10 CFU/g on Day 6 to 0.62 log10 CFU/g on Day 60. With 60 days dry biofilms on TPU, an antagonistic interaction was observed among O103:H2 and multispecies biofilm T1 and T3. E. coli O103:H2 was not recovered from T1 and T3 after 60 days but it was recovered (33%) from T2 and T4 dry biofilms. At 10°C, contamination of beef with O103:H2 decreased (P < 0.001) from 1.38 log10 CFU/g after 6 days to 0.47 log10 CFU/g after 60 days. At 10°C, recovery of O103:H2 from 60 days dry biofilms could only be detected after enrichment and was always higher for T2 than T4 biofilms. Regardless of temperature, the transfer of O103:H2 to beef from the biofilm on TPU was greater (P < 0.001) than SS. Moist biofilms also resulted in greater (P < 0.001) cell transfer to beef than dry biofilms at 10 and 25°C. Development of SP or LAB multispecies biofilms with O103:H2 can either increase or diminish the likelihood of beef contamination. Environmental conditions such as humidity, contact surface type, as well as biofilm aging all can influence the risk of beef being contaminated by STEC within multi-species biofilms attached to food contact surfaces.

7.
Food Chem ; 383: 132618, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35255367

RESUMO

Canola protein derived from the canola industry byproduct is a potent biopolymer source to develop sustainable food packaging materials, but it has limitations due to its poor mechanical and barrier properties. Nanomaterials such as nanocrystalline cellulose (NCC) have shown promising potential in improving material properties. The current study aimed to enhance the functionality of canola protein-based films using TEMPO ((2,2,6,6-Tetramethylpiperidin-1-yl)oxyl) modified nanocrystalline cellulose (TM-NCC). TEMPO modification was performed using TEMPO/NaClO/NaBr based oxidation. Modified and unmodified nanocrystalline cellulose (U-NCC) were used at different weight ratios to prepare the films. TEMPO-mediated oxidation converted 19.61 ± 3.53 % of primary -OH groups into -COOH groups. The addition of U-NCC and TM-NCC significantly increased the tensile strength reporting the highest value of 8.36 ± 0.85 MPa for 5% TM-NCC, which was only 3.43 ± 0.66 MPa for control films. Interestingly, both U-NCC and TM-NCC enhanced the films' water barrier and thermal properties compared to control.


Assuntos
Brassica napus , Nanopartículas , Celulose/química , Embalagem de Alimentos , Nanopartículas/química , Resistência à Tração , Água
8.
J Food Sci ; 85(4): 936-946, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32249417

RESUMO

The effectiveness of plant extracts (0.05% rosemary and 0.08% oregano) to extend shelf life of bison strip loin steaks in terms of color stability and consumer acceptability was studied. Steaks treated with oregano presented lower oxygen consumption, higher metmyoglobin-reducing activity (MRA), decreased lipid oxidation, and provided a stable red color with less discoloration during the retail display period than the control and rosemary treated steaks (P < 0.05). Results from consumer sensory evaluation indicated that treated steaks under study were not significantly different from the control (P > 0.05) based on palatability attributes and acceptability. However, rosemary treated steaks were more desirable and palatable than their oregano counterparts (P < 0.05). Overall, plant extracts, particularly oregano, can improve color stability of bison steaks due to its antioxidants properties and ability to increase MRA capacity in fresh bison meat without posing any negative impact on its sensory attributes. PRACTICAL APPLICATION: This study will provide valuable information to the bison meat industry on how to offer a more consistent and acceptable product (in terms of palatability and color) to consumers using plant-based natural antioxidants, without diminishing the palatability of their products. This technology can offer two more days of shelf life in retail overwrap packaging, consequently, opening the possibility for the bison industry to expand its market with a potential to reduce retail losses due to poor color stability and early browning (that is, stock out, markdowns, and waste due to expired display life).


Assuntos
Conservação de Alimentos/métodos , Conservantes de Alimentos/análise , Carne/análise , Extratos Vegetais/análise , Animais , Antioxidantes/análise , Bison , Cor , Armazenamento de Alimentos , Metamioglobina/metabolismo , Músculo Esquelético/química , Origanum/química , Oxirredução , Substâncias Reativas com Ácido Tiobarbitúrico/análise
9.
J Food Prot ; 83(11): 1974-1982, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32634215

RESUMO

ABSTRACT: The goal of this research was to evaluate the efficacy of a novel rechargeable nonleaching polycationic N-halamine coating applied to stainless steel food contact surfaces to reduce Listeria monocytogenes contamination on ready-to-eat (RTE) foods. Four L. monocytogenes strains were inoculated onto the charged (C; chlorine activated) or noncharged (NC) N-halamine-coated steel coupon surfaces that were either intact or scratched. After inoculation, test surfaces were incubated at 2, 10, and 25°C for 0, 48, and 72 h. L. monocytogenes transfer from coated adulterated surfaces to RTE meat (beef sausages and roast beef) was also tested at 2°C. L. monocytogenes on both intact-C and scratched-C surfaces was significantly reduced at all temperatures; however, in the presence of organic material, these coatings were more effective for reducing L. monocytogenes at 2 and 10°C than at 25°C (P < 0.05). In contrast, on NC intact and scratched surfaces, reduction at 25°C increased (P < 0.05), decreasing the difference in L. monocytogenes levels between charged and noncharged intact and scratched surfaces at this temperature. Overall, greater L. monocytogenes reduction was achieved on intact-C and scratched-C (4.1 ± 0.19 log CFU/cm2) than on intact-NC and scratched-NC (2.3 ± 0.19 log CFU/cm2) surfaces at all temperatures (P < 0.05). The combination of surface condition and chlorine with coupons exposed for 2 h at 2°C in the presence of an organic load (50% meat purge) did not significantly affect the bactericidal efficacy of the N-halamine coating. Regarding transfer to RTE meat, an overall 3.7-log reduction in L. monocytogenes was observed in sausages and roast beef. These findings suggest that a novel rechargeable N-halamine coating on stainless steel surfaces can inactivate L. monocytogenes.


Assuntos
Listeria monocytogenes , Produtos da Carne , Aminas , Animais , Antibacterianos/farmacologia , Bovinos , Contagem de Colônia Microbiana , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Manipulação de Alimentos , Microbiologia de Alimentos
10.
Microorganisms ; 8(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545206

RESUMO

This study aimed to compare antimicrobial resistance (AMR) in extended-spectrum cephalosporin-resistant and generic Escherichia coli from a One Health continuum of the beef production system in Alberta, Canada. A total of 705 extended-spectrum cephalosporin-resistant E. coli (ESCr) were obtained from: cattle feces (CFeces, n = 382), catch basins (CBasins, n = 137), surrounding streams (SStreams, n = 59), beef processing plants (BProcessing, n = 4), municipal sewage (MSewage; n = 98) and human clinical specimens (CHumans, n = 25). Generic isolates (663) included: CFeces (n = 142), CBasins (n = 185), SStreams (n = 81), BProcessing (n = 159) and MSewage (n = 96). All isolates were screened for antimicrobial susceptibility to 9 antimicrobials and two clavulanic acid combinations. In ESCr, oxytetracycline (87.7%), ampicillin (84.4%) and streptomycin (73.8%) resistance phenotypes were the most common, with source influencing AMR prevalence (p < 0.001). In generic E. coli, oxytetracycline (51.1%), streptomycin (22.6%), ampicillin (22.5%) and sulfisoxazole (14.3%) resistance were most common. Overall, 88.8% of ESCr, and 26.7% of generic isolates exhibited multi-drug resistance (MDR). MDR in ESCr was high from all sources: CFeces (97.1%), MSewage (96.9%), CHumans (96%), BProcessing (100%), CBasins (70.5%) and SStreams (61.4%). MDR in generic E. coli was lower with CFeces (45.1%), CBasins (34.6%), SStreams (23.5%), MSewage (13.6%) and BProcessing (10.7%). ESBL phenotypes were confirmed in 24.7% (n = 174) ESCr and 0.6% of generic E. coli. Prevalence of bla genes in ESCr were blaCTXM (30.1%), blaCTXM-1 (21.6%), blaTEM (20%), blaCTXM-9 (7.9%), blaOXA (3.0%), blaCTXM-2 (6.4%), blaSHV (1.4%) and AmpC ß-lactamase blaCMY (81.3%). The lower AMR in ESCr from SStreams and BProcessing and higher AMR in CHumans and CFeces likely reflects antimicrobial use in these environments. Although MDR levels were higher in ESCr as compared to generic E. coli, AMR to the same antimicrobials ranked high in both ESCr and generic E. coli sub-populations. This suggests that both sub-populations reflect similar AMR trends and are equally useful for AMR surveillance. Considering that MDR ESCr MSewage isolates were obtained without enrichment, while those from CFeces were obtained with enrichment, MSewage may serve as a hot spot for MDR emergence and dissemination.

11.
Front Vet Sci ; 7: 90, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32185186

RESUMO

Recent concerns over linkages between antimicrobial resistance in human pathogens and antimicrobial use in livestock have prompted researchers to investigate management strategies that reduce the current reliance on in-feed tylosin to control liver abscesses in feedlot cattle. A total of 7,576 crossbred yearlings were allocated to the study (~253 animals/pen, 10 replicate pens per treatment) and individually randomized to one of three treatments. Tylosin phosphate (11 ppm) was included in-feed (1) for the first 125 days on feed (DOF) (FIRST-78%), (2) for DOF 41 to 161 (LAST-75%), or (3) for the entire feeding period (CON; day 0-161). Fecal composites were collected from the pen floor on days 0, 81, and 160 of the finishing period. Serial dilutions were spread plated for enumeration of enterococci on Bile Esculin Azide (BEA) agar and BEA amended with 8 µg/ml erythromycin. Results indicated that although the proportion of EryR enterococci increased with DOF (P < 0.01), neither treatment (P = 0.34) or treatment × DOF (P = 0.37) affected antimicrobial resistance. Of the 538 isolates, 97% were enterococci, with mixed species isolated early in the feeding period and only Enterococcus hirae isolated at the end. Isolates were most frequently resistant to tylosin (86%), erythromycin (84%), and doxycycline (31%). Macrolide and tetracycline resistant isolates harbored erm(B), msrC, and tet(L), tet(M), tet(O) genes, respectively. Overall, the proportion of EryR enterococci increased (P < 0.05) in all three treatments over the feeding period. Compared to the control cattle, FIRST-78% cattle had more severe (P < 0.05) liver abscesses, while there was a trend (P < 0.08) for this response in LAST-75% cattle. There was no difference (P > 0.05) in total liver abscesses, growth performance, carcass traits, morbidity, or mortality among treatments. These results support the potential to reduce the duration and therefore quantity of tylosin administered to feedlot cattle during the feeding period without impacting animal productivity.

12.
Microorganisms ; 8(3)2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32235751

RESUMO

Antimicrobial resistance (AMR) has important implications for the continued use of antibiotics to control infectious diseases in both beef cattle and humans. AMR along the One Health continuum of the beef production system is largely unknown. Here, whole genomes of presumptive extended-spectrum ß-lactamase E. coli (ESBL-EC) from cattle feces (n = 40), feedlot catch basins (n = 42), surrounding streams (n = 21), a beef processing plant (n = 4), municipal sewage (n = 30), and clinical patients (n = 25) are described. ESBL-EC were isolated from ceftriaxone selective plates and subcultured on ampicillin selective plates. Agreement of genotype-phenotype prediction of AMR ranged from 93.2% for ampicillin to 100% for neomycin, trimethoprim/sulfamethoxazole, and enrofloxacin resistance. Overall, ß-lactam (100%; blaEC, blaTEM-1, blaSHV, blaOXA, blaCTX-M-), tetracycline (90.1%; tet(A), tet(B)) and folate synthesis (sul2) antimicrobial resistance genes (ARGs) were most prevalent. The ARGs tet(C), tet(M), tet(32), blaCTX-M-1, blaCTX-M-14, blaOXA-1, dfrA18, dfrA19, catB3, and catB4 were exclusive to human sources, while blaTEM-150, blaSHV-11-12, dfrA12, cmlA1, and cmlA5 were exclusive to beef cattle sources. Frequently encountered virulence factors across all sources included adhesion and type II and III secretion systems, while IncFIB(AP001918) and IncFII plasmids were also common. Specificity and prevalence of ARGs between cattle-sourced and human-sourced presumptive ESBL-EC likely reflect differences in antimicrobial use in cattle and humans. Comparative genomics revealed phylogenetically distinct clusters for isolates from human vs. cattle sources, implying that human infections caused by ESBL-EC in this region might not originate from beef production sources.

13.
Int J Food Microbiol ; 305: 108250, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31226567

RESUMO

The purpose of this study was to determine the effectiveness of a commercial Salmonella bacteriophage mixture (SalmoFresh™ 6-phage strains) and to compare its effectiveness with a chlorinated water treatment to reduce Salmonella on produce and seeds at different temperatures and storage times. Two sets of experiments were designed to test phage and chlorinated water effectiveness on produce at 2, 10 and 25 °C at different storage times (1, 24, 48 and 72 h). First, SalmoFresh™ was applied to the surface of lettuce, mung bean sprouts and mung bean seeds that were spot-inoculated with a five Salmonella strain mixture (Newport, Braenderup, Typhimurium, Kentucky, and Heidelberg, 105 CFU/mL) by spraying phages onto lettuce (n = 48 pieces, 3×3 cm2 per treatment) and sprouts (n = 48 pieces per treatment). A second set of experiments (scaled-up) consisted in the application of phages by immersion to Salmonella adulterated lettuce (600 g), 300 g sprouts (300 g) or mung bean seeds (30 g) in a phage cocktail (108 PFU/mL) for 15 min (lettuce and sprouts) or 1 h (seeds). Another group of samples was washed with chlorinated water and yet another group was treated with a combination of chlorinated water followed by phage cocktail. Each experiment was repeated three times by quadruplicates. After the treatments for spot-inoculated and scaled-up experiments, lettuce and sprouts were separated into different lots (10 g/lot) and stored at 2, 10 and 25 °C; Salmonella was enumerated after 1, 24, 48 and 72 h. Adulterated phage-treated seeds were packaged and stored dry at 25 °C. Salmonella was enumerated after 72 h of storage. Groups of phage treated mung bean seeds (720 g) were germinated, and the reduction in Salmonella determined. Results of microplate virulence assays indicated that SalmoFresh™ reduced (P = 0.007) Salmonella by an average of 5.34 logs CFU/mL after 5 h at 25 °C. Spraying SalmoFresh™ onto lettuce and sprouts reduced Salmonella by 0.76 and 0.83 log10 CFU/g, respectively (P < 0.01). Immersion of produce in a phage solution was better at killing Salmonella P < 0.05) than spraying it onto the surface, reducing Salmonella by 2.43 and 2.16 log10 CFU/g on lettuce and sprouts, respectively. SalmoFresh™ was an effective biocontrol intervention to reduce Salmonella on lettuce and sprouts. On seeds, although a reduction was observed, Salmonella was able to grow exponentially during germination; therefore, the phage cocktail was not effective on mung bean seeds or sprouts obtained from adulterated seeds. The combination of hurdles, chlorination fallowed by the phage cocktail was the most effective treatment to reduce Salmonella on lettuce and sprouts.


Assuntos
Conservação de Alimentos/métodos , Lactuca/microbiologia , Fagos de Salmonella/fisiologia , Salmonella/isolamento & purificação , Salmonella/virologia , Sementes/microbiologia , Vigna/microbiologia , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Germinação , Salmonella/classificação , Salmonella/genética , Sementes/crescimento & desenvolvimento , Vigna/crescimento & desenvolvimento
14.
Int J Food Microbiol ; 269: 52-59, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29421358

RESUMO

Biofilms are known to play important roles in bacterial survival and persistence in food-processing environments. This study aimed to determine the ability of the top 7 STEC serotypes to form biofilms on polystyrene (POL) and stainless steel (SS) plates and to quantify their survival and transfer from dry-surface biofilms to lettuce pieces. The ability of 14 STEC strains to form biofilms on these two materials at different exposure times and temperatures was assessed using crystal violet, Congo red and SEM. At 10 °C all serotypes were weak biofilm producers on both surfaces. In contrast, serotypes O45-040, O45-445, O103-102, O103-670 and O157-R508 were strong biofilm producers at 25 °C. Strains O103-102, O103-670, O111-CFS, O111-053 and O157:H7-R508 were expressers of curli. Under scanning electron microscopy, strains O103-670, O111-CFS, O157-R508, and O121-083 formed more discernible multilayer, mature biofilms on SS coupons. Regardless of the surface (POL/SS), all STEC strains were able to transfer viable cells onto fresh lettuce within a short contact time (2 min) to varying degrees (up to 6.35 log cfu/g). On POL, viable cell of almost all serotypes exhibited decreased detachment (p = 0.001) over 6 days; while after 30 days on SS, serotypes O45-040, O103-102, O103-670, O111-053, O111-CFS, O121-083, O145-231 O157:H7-R508 and O157:H7-122 were transferred to lettuce. After enrichment, all 14 STEC strains were recovered from dry-surface biofilms on POL and SS plates after 30 days. Results demonstrated that the top 7 STEC remained viable within dry-surface biofilms for at least 30 days, transferring to lettuce within 2 min of exposure and acting as a source of adulteration.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Escherichia coli O157/crescimento & desenvolvimento , Lactuca/microbiologia , Toxina Shiga/metabolismo , Animais , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Sorogrupo , Aço Inoxidável
15.
Microorganisms ; 6(3)2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012975

RESUMO

This study aimed to better understand the potential public health risk associated with zoonotic pathogens in agricultural fairs and petting zoos in Canada. Prevalence of Salmonella, Shiga toxin-producing Escherichia coli (STEC) O157:H7, and top six non-O157 STEC serogroups in feces (n = 88), hide/feather (n = 36), and hand rail samples (n = 46) was assessed, as well as distributions of antimicrobial resistant (AMR) broad and extended-spectrum ß-lactamase (ESBL)-producing E. coli. Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in pig nasal swabs (n = 4), and Campylobacter, Cryptosporidium, and Giardia in feces was also assessed. Neither Salmonella nor MRSA were detected. Campylobacter spp. were isolated from 32% of fecal samples. Cryptosporidium and Giardia were detected in 2% and 15% of fecal samples, respectively. Only one fecal sample was positive for STEC O157, whereas 22% were positive for non-O157 STEC. Multi-drug resistance (MDR) to antibiotics classified as critically and highly important in human medicine was proportionally greatest in E. coli from cattle feces. The ß-lactamase-producing E. coli from pig, horse/donkey feces, and hand rail samples, as well as the STEC E. coli from handrail swabs were MDR. The diversity and prevalence of zoonotic pathogens and AMR bacteria detected within agricultural fairs and petting zoos emphasize the importance of hygienic practices and sanitization with respect to reducing associated zoonotic risks.

16.
Int J Food Microbiol ; 253: 43-47, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28477522

RESUMO

Campylobacter is an important zoonotic pathogen found in livestock and can cause illness in humans following consumption of raw and undercooked meat products. The objectives of this study were to determine the prevalence of Campylobacter spp. in retail meat (poultry, turkey, pork and beef) purchased in Alberta, Canada and to assess antimicrobial resistance and genetic relatedness of recovered Campylobacter strains with previously isolated strains from clinical and environmental sources. A Comparative Genomic Fingerprinting (CGF) method was used for assessing genetic relatedness of isolates. A total of 606 samples comprising 204, 110, 145 and 147 samples of retail chicken, turkey, ground beef and pork, respectively, were obtained. Campylobacter was isolated from 23.5% (48/204) of chicken samples and 14.2% (8/110) of turkey samples. Pork and beef samples were negative for Campylobacter. Campylobacter jejuni was the most common (94.6%) spp. found followed by C. coli (5.4%). Resistance to tetracycline was found in 48.1% of isolates, followed by resistance to ciprofloxacin (5.5%), nalidixic acid (5.5%), azithromycin (1.78%), and erythromycin (1.78%). All isolates were susceptible to clindamycin, florfenicol, gentamicin and telithromycin. Tetracycline resistance was attributable to the presence of the tetO gene. CGF analysis showed that Campylobacter isolated from poultry meat in this study were genetically related to clinical isolates recovered from human infections and to those isolated from animals and the environment.


Assuntos
Antibacterianos/farmacologia , Campylobacter coli/efeitos dos fármacos , Campylobacter coli/isolamento & purificação , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/isolamento & purificação , Farmacorresistência Bacteriana/genética , Produtos da Carne/microbiologia , Carne Vermelha/microbiologia , Alberta , Animais , Proteínas de Bactérias/genética , Campylobacter coli/genética , Campylobacter jejuni/genética , Proteínas de Transporte/genética , Bovinos , Galinhas/microbiologia , Hibridização Genômica Comparativa/métodos , Impressões Digitais de DNA/métodos , Farmacorresistência Bacteriana Múltipla , Humanos , Gado/microbiologia , Testes de Sensibilidade Microbiana , Suínos/microbiologia , Perus/microbiologia
17.
J Food Prot ; 80(12): 1964-1972, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29130766

RESUMO

Nontyphoid Salmonella strains are some of the leading causes of foodborne illnesses worldwide; however, there is very limited information on the presence and characteristics of Salmonella in the food production chain in developing countries. In this study, pulsed-field gel electrophoresis (PFGE) was used for molecular subtyping and for monitoring the ecology and transmission of Salmonella isolates in a slaughter facility in Mexico in an attempt to determine specific steps that need to be improved to reduce Salmonella contamination in beef carcasses. A total of 94 isolates from a Salmonella stock culture collection originally obtained from a single vertically integrated feedlot and beef abattoir in Mexico were analyzed. A total of 26 unique PFGE patterns were identified, 38.5% of them corresponding to a single serotype. High concordance (88.4%) was found between serotype and PFGE banding subtype. Salmonella Kentucky and Salmonella Give were the most clonal subtypes in this study, and Salmonella Muenster was the most diverse, with 11 banding patterns identified. A total of 73.7, 70.6, and 85.7% of the PFGE subtypes identified from preevisceration, precooler, and chilled carcasses, respectively, were identified only at those specific points and not at any previous or subsequent steps of the slaughter process, suggesting that each step is in itself a source of Salmonella contamination. Salmonella Mbandaka was more likely to be recovered from feces than from any of the steps of the slaughter process. The genetic diversity and distribution of PFGE subtypes in the processing facility highlight the need to implement antimicrobial interventions and improve sanitation procedures at various points to avoid further Salmonella dissemination into the meat supply.


Assuntos
Carne Vermelha , Salmonella , Matadouros , Animais , Antibacterianos , Bovinos , Eletroforese em Gel de Campo Pulsado/métodos , Fezes , Contaminação de Alimentos , México , Carne Vermelha/microbiologia , Salmonella/genética , Salmonella/isolamento & purificação , Salmonella enterica/classificação
18.
Int J Food Microbiol ; 241: 49-59, 2017 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-27750110

RESUMO

This study investigated the frequency of Salmonella serovars on pig carcasses at various processing steps in two commercial pork processing plants in Alberta, Canada and characterized phenotypic and genotypic antimicrobial resistance (AMR) and PFGE patterns of the Salmonella isolates. Over a one year period, 1000 swab samples were collected from randomly selected pigs at two slaughter plants. Sampling points were: carcass swabs after bleeding (CSAB), carcass swabs after de-hairing (CSAD, plant A) or skinning (CSASk, plant B), carcass swabs after evisceration (CSAE), carcass swabs after pasteurization (CSAP, plant A) or washing (CSAW, plants B) and retail pork (RP). For plant A, 87% of CSAB and 8% of CSAE were positive for Salmonella while at plant B, Salmonella was recovered from 94% of CSAB and 10% of CSAE. Salmonella was not recovered from the RP samples at either plant, indicating that the plants used effective control measures. Salmonella enterica serovar Derby was the most common serotype (23%, 29/127) recovered in plant A and plant B (61%, 76/124). For plant A, 35% (45/127) of isolates were resistant to at least one antimicrobial. Five isolates (3.9%), 4 serovar Ohio strains and one serovar I:Rough-O:I,v:-, strain were simultaneously resistant to antimicrobials of very high (Category I), high (Category II), and medium (Category III) importance to human medicine. The 4 S. Ohio isolates were recovered from 3 different steps of pork processing on the same sampling day and displayed resistance to 5-7 antimicrobials, with all of them displaying resistance to ceftiofur and ceftriaxone (Category I). An I:Rough-O:l,v:- isolate, recovered on a different sampling day, was resistant to 7 antimicrobials that included resistance to ampicillin/clavulanic acid, ceftiofur and ceftriaxone (Category I). Salmonella strains isolated from plant A harbored 12 different AMR genes. The most prevalent genes were sul1, sul2, tet(A), tet(B), aadA, strA/strB, aac(3)IV and aphA1. For Salmonella isolates from plant B, 7 resistance genes were identified alone or in combination where tet(B) was found in 77 (62.3%) of the isolates. For plant A, 19 different PFGE subtypes of Salmonella isolates that displayed phenotypic and/or genotypic resistance were observed while 13 different PFGE subtypes were observed for plant B. The lack of detection of Salmonella on the surfaces of RP suggests that current pork processing practices can dramatically reduce Salmonella. Salmonella isolates from pig carcasses at various steps displayed multidrug resistance, including to those of very high importance in human medicine, which represent a public health concern.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Produtos da Carne/microbiologia , Carne/microbiologia , Salmonelose Animal/prevenção & controle , Salmonella enterica/isolamento & purificação , Salmonella/isolamento & purificação , Alberta , Animais , Antibacterianos/química , Eletroforese em Gel de Campo Pulsado , Genótipo , Testes de Sensibilidade Microbiana , Prevalência , Salmonella/efeitos dos fármacos , Salmonelose Animal/epidemiologia , Salmonella enterica/efeitos dos fármacos , Sorogrupo , Suínos
19.
J Food Sci ; 81(8): M1987-95, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27399584

RESUMO

This study was conducted to evaluate the survival of 7 Shiga-toxigenic Escherichia coli (STEC) in fresh cold-pressed juice and the antimicrobial efficacy of 4 essential oils (EO: achillea, rosemary, sage, and thyme). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of each EO was determined using microdilution assays evaluated at pH levels 4 and 7; as well as at 4 and 25 °C; daily for up to 5 d. Results indicated that 5 of 7 serotypes survived well in cold-pressed raw juice for at least 4 d at 4 °C and pH 3.5 with no significant (P > 0.05) reduction in viability. The EO showed varying degrees of antimicrobial activity against the 7 STEC. The MIC and MBCs were lowest for thyme (2 µg/L) and highest for sage (15 to 25 µg/L). The antimicrobial activity was enhanced at low pH and temperature. Data showed that although the top 7 STEC could survive low pH and temperature in vitro and in cold-pressed juices, EO, especially from thyme and rosemary, reduced STEC to an undetectable level at 4 °C, suggesting that they could be used as natural antimicrobials in juice.


Assuntos
Achillea/química , Anti-Infecciosos/farmacologia , Sucos de Frutas e Vegetais/microbiologia , Lamiaceae/química , Extratos Vegetais/farmacologia , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Temperatura Baixa , Escherichia coli O157/efeitos dos fármacos , Microbiologia de Alimentos , Humanos , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Rosmarinus/química , Salvia officinalis/química , Escherichia coli Shiga Toxigênica/crescimento & desenvolvimento , Especiarias , Thymus (Planta)/química
20.
J Food Prot ; 78(2): 264-72, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25710140

RESUMO

The objective of the study was to characterize virulence genes and subtype Escherichia coli O157:H7 and O157:H( 2 ) isolates obtained from a vertically integrated feedlot slaughter plant in Mexico. A total of 1,695 samples were collected from feedlots, holding pens, colon contents, hides, and carcasses. E. coli O157:H7 detection and confirmation was carried out using conventional microbiology techniques, immunomagnetic separation, latex agglutination, and the BAX system. A total of 97 E. coli O157 strains were recovered and screened for key virulence and metabolic genes using multiplex and conventional PCR. Eighty-eight (91.72%) of the strains carried stx2, eae, and ehxA genes. Ten isolates (8.25%) were atypical sorbitol-fermenting strains, and nine were negative for the flicH7 gene and lacked eae, stx1, stx2, and ehxA. One sorbitol-positive strain carried stx2, eae, tir, toxB, and iha genes but was negative for stx1 and ehxA. Pulsed-field gel electrophoresis (PFGE) analysis yielded 49 different PFGE subtypes, showing a high genetic diversity; however, the majority of the typical isolates were closely related (80 to 90% cutoff). Atypical O157 isolates were not closely related within them or to typical E. coli O157:H7 isolates. Identical PFGE subtypes were found in samples obtained from colon contents, feedlots, holding pens, and carcasses. Isolation of a sorbitolfermenting E. coli O157 positive for a number of virulence genes is a novel finding in Mexico. These data showed that genetically similar strains of E. coli O157:H7 can be found at various stages of beef production and highlights the importance of preventing cross-contamination at the pre- and postharvest stages of processing.


Assuntos
Escherichia coli O157/isolamento & purificação , Fezes/microbiologia , Carne/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Bovinos , Eletroforese em Gel de Campo Pulsado , Escherichia coli O157/classificação , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Separação Imunomagnética , México , Reação em Cadeia da Polimerase , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA