Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(28): e2122122119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867750

RESUMO

The precise and accurate determination of the radionuclide inventory in radioactive waste streams, including those generated during nuclear decommissioning, is a key aspect in establishing the best-suited nuclear waste management and disposal options. Radiocarbon ([Formula: see text]) is playing a crucial role in this scenario because it is one of the so-called difficult to measure isotopes; currently, [Formula: see text] analysis requires complex systems, such as accelerator mass spectrometry (AMS) or liquid scintillation counting (LSC). AMS has an outstanding limit of detection, but only a few facilities are available worldwide; LSC, which can have similar performance, is more widespread, but sample preparation can be nontrivial. In this paper, we demonstrate that the laser-based saturated-absorption cavity ring-down (SCAR) spectroscopic technique has several distinct advantages and represents a mature and accurate alternative for [Formula: see text] content determination in nuclear waste. As a proof-of-principle experiment, we show consistent results of AMS and SCAR for samples of concrete and graphite originating from nuclear installations. In particular, we determined mole fractions of 1.312(9) F[Formula: see text] and 30.951(7) F[Formula: see text] corresponding to ∼1.5 and 36.2 parts per trillion (ppt), respectively, for two different graphite samples originating from different regions of the Adiabatic Resonance Crossing activator prototype installed on one irradiation line of an MC40 Scanditronix cyclotron. Moreover, we measure a mole fraction of 0.593(8) F[Formula: see text] ([Formula: see text] ppt) from a concrete sample originating from an external wall of the Ispra-1 nuclear research reactor currently in the decommissioning phase.


Assuntos
Radioisótopos de Carbono , Grafite , Resíduos Radioativos , Gerenciamento de Resíduos , Radioisótopos de Carbono/análise , Grafite/química , Espectrometria de Massas , Resíduos Radioativos/análise , Datação Radiométrica , Gerenciamento de Resíduos/métodos
2.
Opt Lett ; 49(7): 1733-1736, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560849

RESUMO

We report on the generation of twin beams through a cascaded process of optical parametric oscillation in a doubly resonant second-harmonic generation system. These bright beams exhibit strong quantum correlations, enabling the observation of up to 5 dB of noise reduction in their intensity difference below the standard quantum limit.

3.
Appl Opt ; 63(16): 4226-4233, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856597

RESUMO

The real-time monitoring of densely populated areas with high seismic and volcanic risk is of crucial importance for the safety of people and infrastructures. When an earthquake occurs, the Earth surface experiences both translational and rotational motions. The latter are usually not monitored, but their measurement and characterization are essential for a full description of the ground motion. Here we present preliminary observational data of a high-sensitivity rotational sensor based on a 2-km-long fiber-optic Sagnac gyroscope, presently under construction in the middle of the Campi Flegrei Volcanic Area (Pozzuoli, Italy). We have evaluated its performance by analyzing data continuously recorded during an acquisition campaign of five months. The experimental setup was composed of a digital nine-component seismic station equipped with both a rotational sensor and conventional seismic sensors (seismometers, accelerometers, and tiltmeters). During this experiment we detected seismic noise and ground rotations wavefield induced by small to medium local earthquakes (M D<3). The prototype gyroscope shows a very promising sensitivity in the range of 5×10-7-8×10-9 r a d/s/H z over the frequency bandwidth 5 mHz-50 Hz. Future upgrades and perspectives are discussed.

4.
Opt Express ; 31(21): 35330-35342, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859267

RESUMO

Mid-infrared frequency combs are nowadays well-appreciated sources for spectroscopy and frequency metrology. Here, a comprehensive approach for characterizing a difference-frequency-generated mid-infrared frequency comb (DFG-comb) both in the time and in the frequency domain is presented. An autocorrelation scheme exploiting mid-infrared two-photon detection is used for characterizing the pulse width and to verify the optimal compression of the generated pulses reaching a pulse duration (FWHM) as low as 196 fs. A second scheme based on mid-infrared heterodyne detection employing two independent narrow-linewidth quantum cascade lasers (QCLs) is used for frequency-narrowing the modes of the DFG-comb down to 9.4 kHz on a 5-ms timescale.

5.
J Chem Phys ; 158(7): 074902, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36813707

RESUMO

Bacterial biofilms mechanically behave as viscoelastic media consisting of micron-sized bacteria cross-linked to a self-produced network of extracellular polymeric substances (EPSs) embedded in water. Structural principles for numerical modeling aim at describing mesoscopic viscoelasticity without losing details on the underlying interactions existing in wide regimes of deformation under hydrodynamic stress. Here, we approach the computational challenge to model bacterial biofilms for predictive mechanics in silico under variable stress conditions. Up-to-date models are not entirely satisfactory due to the plethora of parameters required to make them functioning under the effects of stress. As guided by the structural depiction gained in a previous work with Pseudomonas fluorescens [Jara et al., Front. Microbiol. 11, 588884 (2021)], we propose a mechanical modeling by means of Dissipative Particle Dynamics (DPD), which captures the essentials of topological and compositional interactions between bacterial particles and cross-linked EPS-embedding under imposed shear. The P. fluorescens biofilms have been modeled under mechanical stress mimicking shear stresses as undergone in vitro. The predictive capacity for mechanical features in DPD-simulated biofilms has been investigated by varying the externally imposed field of shear strain at variable amplitude and frequency. The parametric map of essential biofilm ingredients has been explored by making the rheological responses to emerge among conservative mesoscopic interactions and frictional dissipation in the underlying microscale. The proposed coarse grained DPD simulation qualitatively catches the rheology of the P. fluorescens biofilm over several decades of dynamic scaling.


Assuntos
Pseudomonas fluorescens , Pseudomonas fluorescens/fisiologia , Biofilmes , Reologia , Simulação por Computador , Hidrodinâmica
6.
Opt Express ; 30(7): 10217-10228, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35472994

RESUMO

Quantum cascade laser frequency combs are nowadays well-appreciated sources for infrared spectroscopy. Here their applicability for free-space optical communication is demonstrated. The spontaneously-generated intermodal beat note of the frequency comb is used as carrier for transferring the analog signal via frequency modulation. Exploiting the atmospheric transparency window at 4 µm, an optical communication with a signal-to-noise ratio up to 65 dB is realized, with a modulation bandwidth of 300 kHz. The system tolerates a maximum optical attenuation exceeding 35 dB. The possibility of parallel transmission of an independent digital signal via amplitude modulation at 5 Mbit/s is also demonstrated.

7.
Opt Express ; 30(25): 44640-44656, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36522885

RESUMO

The recent development of Quantum Cascade Lasers (QCLs) represents one of the biggest opportunities for the deployment of a new class of Free Space Optical (FSO) communication systems working in the mid-infrared (mid-IR) wavelength range. As compared to more common FSO systems exploiting the telecom range, the larger wavelength employed in mid-IR systems delivers exceptional benefits in case of adverse atmospheric conditions, as the reduced scattering rate strongly suppresses detrimental effects on the FSO link length given by the presence of rain, dust, fog, and haze. In this work, we use a novel FSO testbed operating at 4.7 µm, to provide a detailed experimental analysis of noise regimes that could occur in realistic FSO mid-IR systems based on QCLs. Our analysis reveals the existence of two distinct noise regions, corresponding to different realistic channel attenuation conditions, which are precisely controlled in our setup. To relate our results with real outdoor configurations, we combine experimental data with predictions of an atmospheric channel loss model, finding that error-free communication could be attained for effective distances up to 8 km in low visibility conditions of 1 km. Our analysis of noise regimes may have a key relevance for the development of novel, long-range FSO communication systems based on mid-IR QCL sources.

8.
Opt Express ; 30(25): 45694-45704, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36522969

RESUMO

We report on the experimental realization and a systematic study of optical frequency comb generation in doubly resonant intracavity second harmonic generation (SHG). The efficiency of intracavity nonlinear processes usually benefits from the increasing number of resonating fields. Yet, achieving the simultaneous resonance of different fields may be technically complicated, all the more when a phase matching condition must be fulfilled as well. In our cavity we can separately control the resonance condition for the fundamental and its second harmonic, by simultaneously acting on an intracavity dispersive element and on a piezo-mounted cavity mirror, without affecting the quasi-phase matching condition. In addition, by finely adjusting the laser-to-cavity detuning, we are able to observe steady comb emission across the whole resonance profile, revealing the multiplicity of comb structures, and the substantial role of thermal effects on their dynamics. Lastly, we report the results of numerical simulations of comb dynamics, which include photothermal effects, finding a good agreement with the experimental observations. Our system provides a framework for exploring the richness of comb dynamics in doubly resonant SHG systems, assisting the design of chip-scale quadratic comb generators.

9.
Opt Express ; 29(10): 14536-14547, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985175

RESUMO

We present the characterization of a novel balanced homodyne detector operating in the mid-infrared. The challenging task of revealing non-classicality in mid-infrared light, e. g. in quantum cascade lasers emission, requires a high-performance detection system. Through the intensity noise power spectral density analysis of the differential signal coming from the incident radiation, we show that our setup is shot-noise limited. We discuss the experimental results with a view to possible applications to quantum technologies, such as free-space quantum communication.

10.
Arch Biochem Biophys ; 708: 108939, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34052190

RESUMO

F1Fo-ATP synthase (ATP synthase) is a central membrane protein that synthetizes most of the ATP in the cell through a rotational movement driven by a proton gradient across the hosting membrane. In mitochondria, ATP synthases can form dimers through specific interactions between some subunits of the protein. The dimeric form of ATP synthase provides the protein with a spontaneous curvature that sustain their arrangement at the rim of the high-curvature edges of mitochondrial membrane (cristae). Also, a direct interaction with cardiolipin, a lipid present in the inner mitochondrial membrane, induces the dimerization of ATP synthase molecules along cristae. The deletion of those biochemical interactions abolishes the protein dimerization producing an altered mitochondrial function and morphology. Mechanically, membrane bending is one of the key deformation modes by which mitochondrial membranes can be shaped. In particular, bending rigidity and spontaneous curvature are important physical factors for membrane remodelling. Here, we discuss a complementary mechanism whereby the rotatory movement of the ATP synthase might modify the mechanical properties of lipid bilayers and contribute to the formation and regulation of the membrane invaginations.


Assuntos
Membrana Celular/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Rotação , Membrana Celular/química , Humanos
11.
Opt Lett ; 45(17): 4948-4951, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870899

RESUMO

Modulation transfer spectroscopy is used to demonstrate absolute frequency stabilization of an 8.6-µm-wavelength quantum cascade laser against a sub-Doppler absorption of the CHF3 molecule. The obtained spectral emission properties are thoroughly characterized through a self-referenced optical frequency comb, stabilized against either a GPS-disciplined Rb clock or a 1.54-µm Er-fiber laser locked to a high-finesse ultra-low-expansion optical cavity. Fractional long-term stability and accuracy at a level of 4×10-12 (at 100 s) and 3×10-10, respectively, are demonstrated, along with an emission linewidth as narrow as 10 kHz for observation times of 0.1 s.

12.
Proc Natl Acad Sci U S A ; 114(43): 11291-11296, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073046

RESUMO

ATP synthase is a rotating membrane protein that synthesizes ATP through proton-pumping activity across the membrane. To unveil the mechanical impact of this molecular active pump on the bending properties of its lipid environment, we have functionally reconstituted the ATP synthase in giant unilamellar vesicles and tracked the membrane fluctuations by means of flickering spectroscopy. We find that ATP synthase rotates at a frequency of about 20 Hz, promoting large nonequilibrium deformations at discrete hot spots in lipid vesicles and thus inducing an overall membrane softening. The enhanced nonequilibrium fluctuations are compatible with an accumulation of active proteins at highly curved membrane sites through a curvature-protein coupling mechanism that supports the emergence of collective effects of rotating ATP synthases in lipid membranes.


Assuntos
ATPases Bacterianas Próton-Translocadoras/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Trifosfato de Adenosina/biossíntese , ATPases Bacterianas Próton-Translocadoras/química , ATPases Bacterianas Próton-Translocadoras/genética , Membrana Celular/efeitos dos fármacos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Microscopia de Vídeo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodamina 123/química , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Valinomicina/farmacologia
13.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383699

RESUMO

We review the recent developments in precision ro-vibrational spectroscopy of buffer-gas-cooled neutral molecules, obtained using infrared frequency combs either as direct probe sources or as ultra-accurate optical rulers. In particular, we show how coherent broadband spectroscopy of complex molecules especially benefits from drastic simplification of the spectra brought about by cooling of internal temperatures. Moreover, cooling the translational motion allows longer light-molecule interaction times and hence reduced transit-time broadening effects, crucial for high-precision spectroscopy on simple molecules. In this respect, we report on the progress of absolute frequency metrology experiments with buffer-gas-cooled molecules, focusing on the advanced technologies that led to record measurements with acetylene. Finally, we briefly discuss the prospects for further improving the ultimate accuracy of the spectroscopic frequency measurement.


Assuntos
Acetileno/química , Modelos Teóricos , Espectrofotometria Infravermelho , Algoritmos
14.
Mol Pharm ; 16(12): 4787-4796, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31609634

RESUMO

Mitochondria form a dynamic network of constantly dividing and fusing organelles. The balance between these antagonistic processes is crucial for normal cellular function and requires the action of specialized proteins. The mitochondrial membrane proteins mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2) are responsible for the fusion of the outer membrane of adjacent mitochondria. Mutations within Mfn1 or Mfn2 impair mitochondrial fusion and lead to some severe mitochondrial dysfunctions and mitochondrial diseases (MDs). A characteristic phenotype of cells carrying defective Mfn1 or Mfn2 is the presence of a highly fragmented mitochondrial network. Here, we use a biocompatible mixture of lipids, consisting on synthetic gemini cationic lipids (GCLs) and the zwitterionic phospholipid (DOPE), to complex, transport, and deliver intact copies of MFN1 gene into MFN1-Knockout mouse embryonic fibroblasts (MFN1-KO MEFs). We demonstrate that the GCL/DOPE-DNA lipoplexes are able to introduce the intact MFN1 gene into the cells and ectopically produce functional Mfn1. A four-fold increase of the Mfn1 levels is necessary to revert the MFN1-KO phenotype and to partially restore a mitochondrial network. This phenotype complementation was correlated with the transfection of GCL/DOPE-MFN1 lipoplexes that exhibited a high proportion of highly packaged hexagonal phase. GCL/DOPE-DNA lipoplexes are formulated as efficient therapeutic agents against MDs.


Assuntos
Fibroblastos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Lipídeos/química , Mitocôndrias/metabolismo , Animais , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , GTP Fosfo-Hidrolases/genética , Terapia Genética/métodos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação/genética
15.
J Nanobiotechnology ; 17(1): 108, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31623647

RESUMO

BACKGROUND: A major bottleneck in drug delivery is the breakdown and degradation of the delivery system through the endosomal/lysosomal network of the host cell, hampering the correct delivery of the drug of interest. In nature, the bacterial pathogen Listeria monocytogenes has developed a strategy to secrete Listeriolysin O (LLO) toxin as a tool to escape the eukaryotic lysosomal system upon infection, allowing it to grow and proliferate unharmed inside the host cell. RESULTS: As a "proof of concept", we present here the use of purified His-LLO H311A mutant protein and its conjugation on the surface of gold nanoparticles to promote the lysosomal escape of 40 nm-sized nanoparticles in mouse embryonic fibroblasts. Surface immobilization of LLO was achieved after specific functionalization of the nanoparticles with nitrile acetic acid, enabling the specific binding of histidine-tagged proteins. CONCLUSIONS: Endosomal acidification leads to release of the LLO protein from the nanoparticle surface and its self-assembly into a 300 Å pore that perforates the endosomal/lysosomal membrane, enabling the escape of nanoparticles.


Assuntos
Toxinas Bacterianas/metabolismo , Portadores de Fármacos/metabolismo , Endossomos/metabolismo , Ouro/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/metabolismo , Nanopartículas/metabolismo , Animais , Linhagem Celular , Fibroblastos/metabolismo , Concentração de Íons de Hidrogênio , Listeria monocytogenes/metabolismo , Lisossomos/metabolismo , Camundongos , Modelos Moleculares
16.
J Nanobiotechnology ; 17(1): 77, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31226993

RESUMO

BACKGROUND: The design of efficient drug delivery vectors requires versatile formulations able to simultaneously direct a multitude of molecular targets and to bypass the endosomal recycling pathway of cells. Liposomal-based vectors need the decoration of the lipid surface with specific peptides to fulfill the functional requirements. The unspecific binding of peptides to the lipid surface is often accompanied with uncontrolled formulations and thus preventing the molecular mechanisms of a successful therapy. RESULTS: We present a simple synthesis pathway to anchor cysteine-terminal peptides to thiol-reactive lipids for adequate and quantitative liposomal formulations. As a proof of concept, we have synthesized two different lipopeptides based on (a) the truncated Fibroblast Growth Factor (tbFGF) for cell targeting and (b) the pH sensitive and fusogenic GALA peptide for endosomal scape. CONCLUSIONS: The incorporation of these two lipopeptides in the liposomal formulation improves the fibroblast cell targeting and promotes the direct delivery of cargo molecules to the cytoplasm of the cell.


Assuntos
Dissulfetos/química , Lipídeos/química , Peptídeos/química , Piridinas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Cisteína/química , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos , Endossomos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lipossomos/química , Camundongos , Estrutura Molecular , Imagem Óptica/métodos , Estudo de Prova de Conceito
17.
Sensors (Basel) ; 19(3)2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30682798

RESUMO

We provide here an overview of passive optical micro-cavities made of droplets in the liquid phase. We focus on resonators that are naturally created and suspended under gravity thanks to interfacial forces, illustrating simple ways to excite whispering-gallery modes in various slow-evaporation liquids using free-space optics. Similar to solid resonators, frequency locking of near-infrared and visible lasers to resonant modes is performed exploiting either phase-sensitive detection of the leakage cavity field or multiple interference between whispering-gallery modes in the scattered light. As opposed to conventional micro-cavity sensors, each droplet acts simultaneously as the sensor and the sample, whereby the internal light can detect dissolved compounds and particles. Optical quality factors up to 107⁻108 are observed in liquid-polymer droplets through photon lifetime measurements. First attempts in using single water droplets are also reported. These achievements point out their huge potential for direct spectroscopy and bio-chemical sensing in liquid environments. Finally, the first experiments of cavity optomechanics with surface acoustic waves in nanolitre droplets are presented. The possibility to perform studies of viscous-elastic properties points to a new paradigm: a droplet device as an opto-fluid-mechanics laboratory on table-top scale under controlled environmental conditions.

18.
Biochim Biophys Acta Bioenerg ; 1858(12): 999-1006, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28947254

RESUMO

Mitochondria are essential for the production and maintenance of ATP in the eukaryotic cell. To image and monitor intracellular ATP level without cell breakage, biological and chemical sensors were developed in the last years. Here, we have internalized a rhodamine-based sensor RSL+ into living cells and monitored the mitochondrial ATP levels in cultured mouse embryonic fibroblasts. To evaluate the robustness of the sensor we imaged the changes of the mitochondrial ATP levels under non-physiological conditions upon incubation with FCCP, oligomycin, azide, deoxyglucose or phosphoenolpyruvate; all compounds that interfere with ATP homeostasis of the cell. The ATP sensor allowed us to determine the mitochondrial ATP levels in human skin fibroblasts where we observe a similar amount of ATP compared to mouse embryonic fibroblasts. We propose the RSL+ to be a valuable tool for the assessment of mitochondrial dysfunction in human cells derived from mitochondrial OXPHOS patients and for basic studies on bioenergetics metabolism.


Assuntos
Trifosfato de Adenosina/isolamento & purificação , Técnicas Biossensoriais/métodos , Fibroblastos/metabolismo , Mitocôndrias/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Azidas/farmacologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Desoxiglucose/farmacologia , Fibroblastos/química , Fibroblastos/efeitos dos fármacos , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oligomicinas/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Rodaminas/química
19.
Opt Lett ; 42(10): 1911-1914, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28504757

RESUMO

We report on absolute measurements of saturated-absorption line-center frequencies of room-temperature trifluoromethane using a quantum cascade laser at 8.6 µm and the frequency modulation spectroscopy method. Absolute calibration of the laser frequency is obtained by direct comparison with a mid-infrared optical frequency comb synthesizer referenced to a radio-frequency Rb standard. Several sub-Doppler transitions falling in the υ5 vibrational band are investigated at around 1158.9 cm-1 with a fractional frequency precision of 8.6·10-12 at 1-s integration time, limited by the Rb-clock stability. The demonstrated frequency uncertainty of 6.6·10-11 is mainly limited by the reproducibility of the frequency measurements.

20.
Opt Lett ; 41(21): 5114-5117, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27805704

RESUMO

We report on the generation of coherent mid-infrared radiation around 5.85 µm by difference frequency generation (DFG) of a continuous-wave Nd:YAG laser at 1064 nm and a diode laser at 1301 nm in an orientation-patterned gallium phosphide (OP-GaP) crystal. We provide the first characterization of the linear, thermo-optic, and nonlinear properties of OP-GaP in a DFG configuration. Moreover, by comparing the experimental efficiency to Gaussian beam DFG theory, we derive an effective nonlinear coefficient d=17(3) pm/V for first-order quasi-phase-matched OP-GaP. The temperature and signal wavelength tuning curves are in qualitative agreement with theoretical modeling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA