Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(33): e2203663119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939677

RESUMO

Animals that depend on ephemeral, patchily distributed prey often use public information to locate resource patches. The use of public information can lead to the aggregation of foragers at prey patches, a mechanism known as local enhancement. However, when ephemeral resources are distributed over large areas, foragers may also need to increase search efficiency, and thus apply social strategies when sampling the landscape. While sensory networks of visually oriented animals have already been confirmed, we lack an understanding of how acoustic eavesdropping adds to the formation of sensory networks. Here we radio-tracked a total of 81 aerial-hawking bats at very high spatiotemporal resolution during five sessions over 3 y, recording up to 19 individuals simultaneously. Analyses of interactive flight behavior provide conclusive evidence that bats form temporary mobile sensory networks by adjusting their movements to neighboring conspecifics while probing the airspace for prey. Complementary agent-based simulations confirmed that the observed movement patterns can lead to the formation of mobile sensory networks, and that bats located prey faster when networking than when relying only on local enhancement or searching solitarily. However, the benefit of networking diminished with decreasing group size. The combination of empirical analyses and simulations elucidates how animal groups use acoustic information to efficiently locate unpredictable and ephemeral food patches. Our results highlight that declining local populations of social foragers may thus suffer from Allee effects that increase the risk of collapses under global change scenarios, like insect decline and habitat degradation.


Assuntos
Quirópteros , Eulipotyphla , Comportamento Predatório , Animais , Quirópteros/fisiologia , Ecolocação , Ecossistema , Eulipotyphla/fisiologia , Voo Animal , Comportamento Predatório/fisiologia
2.
Proc Biol Sci ; 291(2015): 20231243, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38229520

RESUMO

Thermal soaring conditions above the sea have long been assumed absent or too weak for terrestrial migrating birds, forcing obligate soarers to take long detours and avoid sea-crossing, and facultative soarers to cross exclusively by costly flapping flight. Thus, while atmospheric convection does develop at sea and is used by some seabirds, it has been largely ignored in avian migration research. Here, we provide direct evidence for routine thermal soaring over open sea in the common crane, the heaviest facultative soarer known among terrestrial migrating birds. Using high-resolution biologging from 44 cranes tracked across their transcontinental migration over 4 years, we show that soaring performance was no different over sea than over land in mid-latitudes. Sea-soaring occurred predominantly in autumn when large water-air temperature difference followed mid-latitude cyclones. Our findings challenge a fundamental migration research paradigm and suggest that obligate soarers avoid sea-crossing not due to the absence or weakness of thermals but due to their low frequency, for which they cannot compensate with prolonged flapping. Conversely, facultative soarers other than cranes should also be able to use thermals over the sea. Marine cold air outbreaks, imperative to global energy budget and climate, may also be important for bird migration.


Assuntos
Aves , Voo Animal , Animais , Clima
3.
Sensors (Basel) ; 23(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38067834

RESUMO

Time-of-arrival transmitter localization systems, which use measurements from an array of sensors to estimate the location of a radio or acoustic emitter, are now widely used for tracking wildlife. Outlier measurements can severely corrupt estimated locations. This article describes a new suite of location estimation algorithms for such systems. The new algorithms detect and discard outlier time-of-arrival observations, which can be caused by non-line-of-sight propagation, radio interference, clock glitches, or an overestimation of the signal-to-noise ratio. The new algorithms also detect cases in which two locations are equally consistent with measurements and can usually select the correct one. The new algorithms can also infer approximate altitude information from a digital elevation map to improve location estimates close to one of the sensors. Finally, the new algorithms approximate the covariance matrix of location estimates in a simpler and more reliable way than the baseline algorithm. Extensive testing on real-world data involving mobile transmitters attached to wild animals demonstrates the efficacy of the new algorithms. Performance testing also shows that the new algorithms are fast and that they can easily cope with high-throughput real-time loads.


Assuntos
Algoritmos , Animais Selvagens , Animais , Razão Sinal-Ruído
4.
Mol Phylogenet Evol ; 175: 107555, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35724818

RESUMO

Climate change and geological events have long been known to shape biodiversity, implying that these can likewise be viewed from a biological perspective. To study whether plants can shed light on this, and how they responded to climate change there, we examined Oreocnide, a genus widely distributed in SE Asia. Based on broad geographic sampling with genomic data, we employed an integrative approach of phylogenomics, molecular dating, historical biogeography, and ecological analyses. We found that Oreocnide originated in mainland East Asia and began to diversify ∼6.06 Ma, probably in response to a distinct geographic and climatic transition in East Asia at around that time, implying that the last important geological change in mainland SE Asia might be 1 Ma older than previously suggested. Around six immigration events to the islands of Malesia followed, indicating that immigration from the mainland could be an underestimated factor in the assembly of biotic communities in the region. Two detected increases of diversification rate occurred 3.13 and 1.19 Ma, which strongly implicated climatic rather than geological changes as likely drivers of diversification, with candidates being the Pliocene intensification of the East Asian monsoons, and Pleistocene climate and sea level fluctuations. Distribution modelling indicated that Pleistocene sea level and climate fluctuations were inferred to enable inter-island dispersal followed by allopatric separation, underpinning radiation in the genus. Overall, our study, based on multiple lines of evidence, linked plant diversification to the most recent climatic and geological events in SE Asia. We highlight the importance of immigration in the assembly and diversification of the SE Asian flora, and underscore the utility of plant clades, as independent lines of evidence, for reconstructing recent climatic and geological events in the SE Asian region.


Assuntos
Urticaceae , Ásia , Biodiversidade , Evolução Biológica , Filogenia , Filogeografia , Plantas
5.
Phys Rev Lett ; 128(14): 148301, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35476490

RESUMO

We study a non-Markovian and nonstationary model of animal mobility incorporating both exploration and memory in the form of preferential returns. Exact results for the probability of visiting a given number of sites are derived and a practical WKB approximation to treat the nonstationary problem is developed. A mean-field version of this model, first suggested by Song et al., [Modelling the scaling properties of human mobility, Nat. Phys. 6, 818 (2010)NPAHAX1745-247310.1038/nphys1760] was shown to well describe human movement data. We show that our generalized model adequately describes empirical movement data of Egyptian fruit bats (Rousettus aegyptiacus) when accounting for interindividual variation in the population. We also study the probability of visiting any site a given number of times and derive a mean-field equation. Our analysis yields a remarkable phase transition occurring at preferential returns which scale linearly with past visits. Following empirical evidence, we suggest that this phase transition reflects a trade-off between extensive and intensive foraging modes.


Assuntos
Quirópteros , Animais , Movimento
6.
J Anim Ecol ; 91(2): 287-307, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34657296

RESUMO

Modern, high-throughput animal tracking increasingly yields 'big data' at very fine temporal scales. At these scales, location error can exceed the animal's step size, leading to mis-estimation of behaviours inferred from movement. 'Cleaning' the data to reduce location errors is one of the main ways to deal with position uncertainty. Although data cleaning is widely recommended, inclusive, uniform guidance on this crucial step, and on how to organise the cleaning of massive datasets, is relatively scarce. A pipeline for cleaning massive high-throughput datasets must balance ease of use and computationally efficiency, in which location errors are rejected while preserving valid animal movements. Another useful feature of a pre-processing pipeline is efficiently segmenting and clustering location data for statistical methods while also being scalable to large datasets and robust to imperfect sampling. Manual methods being prohibitively time-consuming, and to boost reproducibility, pre-processing pipelines must be automated. We provide guidance on building pipelines for pre-processing high-throughput animal tracking data to prepare it for subsequent analyses. We apply our proposed pipeline to simulated movement data with location errors, and also show how large volumes of cleaned data can be transformed into biologically meaningful 'residence patches', for exploratory inference on animal space use. We use tracking data from the Wadden Sea ATLAS system (WATLAS) to show how pre-processing improves its quality, and to verify the usefulness of the residence patch method. Finally, with tracks from Egyptian fruit bats Rousettus aegyptiacus, we demonstrate the pre-processing pipeline and residence patch method in a fully worked out example. To help with fast implementation of standardised methods, we developed the R package atlastools, which we also introduce here. Our pre-processing pipeline and atlastools can be used with any high-throughput animal movement data in which the high data-volume combined with knowledge of the tracked individuals' movement capacity can be used to reduce location errors. atlastools is easy to use for beginners while providing a template for further development. The common use of simple yet robust pre-processing steps promotes standardised methods in the field of movement ecology and leads to better inferences from data.


Assuntos
Movimento , Animais , Reprodutibilidade dos Testes
7.
Ecol Lett ; 24(4): 751-760, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33616308

RESUMO

Cognitive biases for encoding spatial information (orientation strategies) in relation to self (egocentric) or landmarks (allocentric) differ between species or populations according to the habitats they occupy. Whether biases in orientation strategy determine early habitat selection or if individuals adapt their biases following experience is unknown. We determined orientation strategies of pheasants, Phasianus colchicus, using a dual-strategy maze with an allocentric probe trial, before releasing them (n = 20) into a novel landscape, where we monitored their movement and habitat selection. In general, pheasants selected for woodland over non-woodland habitat, but allocentric-biased individuals exhibited weaker avoidance of non-woodland habitat, where we expected allocentric navigation to be more effective. Sex did not influence selection but was associated with speed and directional persistence in non-woodland habitat. Our results suggest that an individual's habitat selection is associated with inherent cognitive bias in early life, but it is not yet clear what advantages this may offer.


Assuntos
Navegação Espacial , Viés , Cognição , Ecossistema , Humanos , Aprendizagem em Labirinto
8.
Proc Biol Sci ; 288(1942): 20202670, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33434462

RESUMO

Early-life conditions have critical, long-lasting effects on the fate of individuals, yet early-life activity has rarely been linked to subsequent survival of animals in the wild. Using high-resolution GPS and body-acceleration data of 93 juvenile white storks (Ciconia ciconia), we examined the links between behaviour during both pre-fledging and post-fledging (fledging-to-migration) periods and subsequent first-year survival. Juvenile daily activity (based on overall dynamic body acceleration) showed repeatable between-individual variation, the juveniles' pre- and post-fledging activity levels were correlated and both were positively associated with subsequent survival. Daily activity increased gradually throughout the post-fledging period, and the relationship between post-fledging activity and survival was stronger in individuals who increased their daily activity level faster (an interaction effect). We suggest that high activity profiles signified individuals with increased pre-migratory experience, higher individual quality and perhaps more proactive personality, which could underlie their superior survival rates. The duration of individuals' fledging-to-migration periods had a hump-shaped relationship with survival: higher survival was associated with intermediate rather than short or long durations. Short durations reflect lower pre-migratory experience, whereas very long ones were associated with slower increases in daily activity level which possibly reflects slow behavioural development. In accordance with previous studies, heavier nestlings and those that hatched and migrated earlier had increased survival. Using extensive tracking data, our study exposed new links between early-life attributes and survival, suggesting that early activity profiles in migrating birds can explain variation in first-year survival.


Assuntos
Migração Animal , Aves , Animais , Estações do Ano
9.
New Phytol ; 232(4): 1863-1875, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34342898

RESUMO

Ocean currents play a significant role in driving the long-distance dispersal (LDD), spatial distribution and phylogeographic patterns of many organisms. Integrating phylogeographic analyses and mechanistic ocean current modelling can provide novel insights into the evolutionary history of terrestrial littoral species but has been rarely applied in this context. We focused on a group of Cycas that have buoyant seeds and occupy coastal habitats. By integrating evidence from mechanistic simulations and whole plastomic data, we examined the role of ocean circulation in shaping the phylogeography of these Cycas species. Plastomes of the studied Cycas species showed extreme conservatism, following a post-Pleistocene divergence. Phylogenies revealed three subclades, corresponding to the Pacific Ocean, Sunda Shelf and Indian Ocean. The ocean modelling results indicate that hotspots of seed stranding coincide well with the contemporary distribution of the Cycas species and that drifting trajectories from the three subclades are largely confined to separate regions. These findings suggest that ocean current systems, by driving long-distance dispersal, have shaped the distribution and phylogeography for Cycas with buoyant seeds. This study highlights how the combination of genomic data and ocean drift modelling can help explain phylogeographic patterns and diversity in terrestrial littoral ecosystems.


Assuntos
Cycas , Dispersão de Sementes , Evolução Biológica , Ecossistema , Variação Genética , Oceano Pacífico , Filogenia , Filogeografia , Sementes/genética
10.
Mol Ecol ; 30(19): 4723-4739, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34260783

RESUMO

Human activities shape resources available to wild animals, impacting diet and probably altering their microbiota and overall health. We examined drivers shaping microbiota profiles of common cranes (Grus grus) in agricultural habitats by comparing gut microbiota and crane movement patterns (GPS-tracking) over three periods of their migratory cycle, and by analysing the effect of artificially supplemented food provided as part of a crane-agriculture management programme. We sampled faecal droppings in Russia (nonsupplemented, premigration) and in Israel in late autumn (nonsupplemented, postmigration) and winter (supplemented and nonsupplemented, wintering). As supplemented food is typically homogenous, we predicted lower microbiota diversity and different composition in birds relying on supplementary feeding. We did not observe changes in microbial diversity with food supplementation, as diversity differed only in samples from nonsupplemented wintering sites. However, both food supplementation and season affected bacterial community composition and led to increased abundance of specific genera (mostly Firmicutes). Cranes from the nonsupplemented groups spent most of their time in agricultural fields, probably feeding on residual grain when available, while food-supplemented cranes spent most of their time at the feeding station. Thus, nonsupplemented and food-supplemented diets probably diverge only in winter, when crop rotation and depletion of anthropogenic resources may lead to a more variable diet in nonsupplemented sites. Our results support the role of diet in structuring bacterial communities and show that they undergo both seasonal and human-induced shifts. Movement analyses provide important clues regarding host diet and behaviour towards understanding how human-induced changes shape the gut microbiota in wild animals.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Aves , Suplementos Nutricionais , Humanos , RNA Ribossômico 16S/genética
11.
Proc Biol Sci ; 287(1935): 20201799, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32962549

RESUMO

Seasonal animal migration is a widespread phenomenon. At the species level, it has been shown that many migratory animal species track similar climatic conditions throughout the year. However, it remains unclear whether such a niche tracking pattern is a direct consequence of individual behaviour or emerges at the population or species level through behavioural variability. Here, we estimated seasonal niche overlap and seasonal niche tracking at the individual and population level of central European white storks (Ciconia ciconia). We quantified niche tracking for both weather and climate conditions to control for the different spatio-temporal scales over which ecological processes may operate. Our results indicate that niche tracking is a bottom-up process. Individuals mainly track weather conditions while climatic niche tracking mainly emerges at the population level. This result may be partially explained by a high degree of intra- and inter-individual variation in niche overlap between seasons. Understanding how migratory individuals, populations and species respond to seasonal environments is key for anticipating the impacts of global environmental changes.


Assuntos
Migração Animal , Aves , Clima , Animais , Mudança Climática , Ecossistema
12.
Mol Ecol ; 29(7): 1358-1371, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32115796

RESUMO

The behavioural ecology of host species is likely to affect their microbial communities, because host sex, diet, physiology, and movement behaviour could all potentially influence their microbiota. We studied a wild population of barn owls (Tyto alba) and collected data on their microbiota, movement, diet, size, coloration, and reproduction. The composition of bacterial species differed by the sex of the host and female owls had more diverse bacterial communities than their male counterparts. The abundance of two families of bacteria, Actinomycetaceae and Lactobacillaceae, also varied between the sexes, potentially as a result of sex differences in hormones and immunological function, as has previously been found with Lactobacillaceae in the microbiota of mice. Male and female owls did not differ in the prey they brought to the nest, which suggests that dietary differences are unlikely to underlie the differences in their microbiota. The movement behaviour of the owls was associated with the host microbiota in both males and females because owls that moved further from their nest each day had more diverse bacterial communities than owls that stayed closer to their nests. This novel result suggests that the movement ecology of hosts can impact their microbiota, potentially on the basis of their differential encounters with new bacterial species as the hosts move and forage across the landscape. Overall, we found that many aspects of the microbial community are correlated with the behavioural ecology of the host and that data on the microbiota can aid in generating new hypotheses about host behaviour.


Assuntos
Microbiota , Atividade Motora , Caracteres Sexuais , Estrigiformes/microbiologia , Animais , Dieta/veterinária , Feminino , Israel , Masculino , Reprodução
13.
Mol Ecol ; 29(23): 4706-4720, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33001530

RESUMO

Animals generally benefit from their gastrointestinal microbiome, but the factors that influence the composition and dynamics of their microbiota remain poorly understood. Studies of nonmodel host species can illuminate how microbiota and their hosts interact in natural environments. We investigated the role of migratory behaviour in shaping the gut microbiota of free-ranging barn swallows (Hirundo rustica) by studying co-occurring migrant and resident subspecies sampled during the autumn migration at a migratory bottleneck. We found that within-host microbial richness (α-diversity) was similar between migrant and resident microbial communities. In contrast, we found that microbial communities (ß-diversity) were significantly different between groups regarding both microbes present and their relative abundances. Compositional differences were found for 36 bacterial genera, with 27 exhibiting greater abundance in migrants and nine exhibiting greater abundance in residents. There was heightened abundance of Mycoplasma spp. and Corynebacterium spp. in migrants, a pattern shared by other studies of migratory species. Screens for key regional pathogens revealed that neither residents nor migrants carried avian influenza viruses and Newcastle disease virus, suggesting that the status of these diseases did not underlie observed differences in microbiome composition. Furthermore, the prevalence and abundance of Salmonella spp., as determined from microbiome data and cultural assays, were both low and similar across the groups. Overall, our results indicate that microbial composition differs between migratory and resident barn swallows, even when they are conspecific and sympatrically occurring. Differences in host origins (breeding sites) may result in microbial community divergence, and varied behaviours throughout the annual cycle (e.g., migration) could further differentiate compositional structure as it relates to functional needs.


Assuntos
Microbioma Gastrointestinal , Microbiota , Andorinhas , Migração Animal , Animais , Bactérias/genética
14.
J Anim Ecol ; 87(6): 1627-1638, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30120893

RESUMO

Early arrival at breeding grounds is of prime importance for migrating birds as it is known to enhance breeding success. Adults, males and higher quality individuals typically arrive earlier, and across years, early arrival has been linked to warmer spring temperatures. However, the mechanisms and potential costs of early arrival are not well understood. To deepen the understanding of arrival date differences between individuals and years, we studied them in light of the preceding spring migration behaviour and atmospheric conditions en route. GPS and body acceleration (ACC) data were obtained for 35 adult white storks (Ciconia ciconia) over five years (2012-2016). ACC records were translated to energy expenditure estimates (overall dynamic body acceleration; ODBA) and to behavioural modes, and GPS fixes were coupled with environmental parameters. At the interindividual level (within years), early arrival was attributed primarily to departing earlier for migration and from more northern wintering sites (closer to breeding grounds), rather than to migration speed. In fact, early-departing birds flew slower, experienced weaker thermal uplifts and expended more energy during flight, but still arrived earlier, emphasizing the cost and the significance of early departure. Individuals that wintered further south arrived later at the breeding grounds but did not produce fewer fledglings, presumably due to positive carry-over effects of advantageous wintering conditions (increased precipitation, vegetation productivity and daylight time). Therefore, early arrival increased breeding success only after controlling for wintering latitude. Males arrived slightly ahead of females. Between years, late arrival was linked to colder temperatures en route through two different mechanisms: stronger headwinds causing slower migration and lower thermal uplifts resulting in longer stopovers. This study showed that distinct migratory properties underlie arrival time variation within and between years. It highlighted (a) an overlooked cost of early arrival induced by unfavourable atmospheric conditions during migration, (b) an important fitness trade-off in storks between arrival date and wintering habitat quality and (c) mechanistic explanations for the negative temperature-arrival date correlation in soaring birds. Such understanding of arrival time can facilitate forecasting migrating species responses to climate changes.


Assuntos
Migração Animal , Cruzamento , Animais , Aves , Mudança Climática , Feminino , Masculino , Estações do Ano
15.
Proc Biol Sci ; 284(1852)2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28404771

RESUMO

Uncertainties regarding food location and quality are among the greatest challenges faced by foragers and communal roosting may facilitate success through social foraging. The information centre hypothesis (ICH) suggests that uninformed individuals at shared roosts benefit from following informed individuals to previously visited resources. We tested several key prerequisites of the ICH in a social obligate scavenger, the Eurasian griffon vulture (Gyps fulvus), by tracking movements and behaviour of sympatric individuals over extended periods and across relatively large spatial scales, thereby precluding alternative explanations such as local enhancement. In agreement with the ICH, we found that 'informed' individuals returning to previously visited carcasses were followed by 'uninformed' vultures that consequently got access to these resources. When a dyad (two individuals that depart from the same roost within 2 min of each other) included an informed individual, they spent a higher proportion of the flight time close to each other at a shorter distance between them than otherwise. Although all individuals occasionally profited from following others, they differed in their tendencies to be informed or uninformed. This study provides evidence for 'following behaviour' in natural conditions and demonstrates differential roles and information states among foragers within a population. Moreover, demonstrating the possible reliance of vultures on following behaviour emphasizes that individuals in declining populations may suffer from reduced foraging efficiency.


Assuntos
Falconiformes/fisiologia , Comportamento Alimentar , Comportamento Social , Animais , Feminino , Israel , Masculino
16.
Proc Natl Acad Sci U S A ; 111(9): 3484-9, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24567398

RESUMO

Determining how widespread human-induced changes such as habitat loss, landscape fragmentation, and climate instability affect populations, communities, and ecosystems is one of the most pressing environmental challenges. Critical to this challenge is understanding how these changes are affecting the movement abilities and dispersal trajectories of organisms and what role conservation planning can play in promoting movement among remaining fragments of suitable habitat. Whereas evidence is mounting for how conservation strategies such as corridors impact animal movement, virtually nothing is known for species dispersed by wind, which are often mistakenly assumed to not be limited by dispersal. Here, we combine mechanistic dispersal models, wind measurements, and seed releases in a large-scale experimental landscape to show that habitat corridors affect wind dynamics and seed dispersal by redirecting and bellowing airflow and by increasing the likelihood of seed uplift. Wind direction interacts with landscape orientation to determine when corridors provide connectivity. Our results predict positive impacts of connectivity and patch shape on species richness of wind-dispersed plants, which we empirically illustrate using 12 y of data from our experimental landscapes. We conclude that habitat fragmentation and corridors strongly impact the movement of wind-dispersed species, which has community-level consequences.


Assuntos
Biodiversidade , Ecossistema , Modelos Biológicos , Fenômenos Fisiológicos Vegetais/fisiologia , Dispersão de Sementes/fisiologia , Vento , Geografia
17.
Am Nat ; 187(6): E152-65, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27172601

RESUMO

In the map-and-compass model of true navigation, animals at unfamiliar sites determine their position relative to a destination site (the map stage) before progressing toward it (the compass stage). A major challenge in animal navigation research is to understand the still cryptic map stage in general and the map stage for free-ranging wild animals in particular. To address this challenge, we experimentally translocated wild, nonmigratory birds (stone curlews [Burhinus oedicnemus]) far from their nests and GPS-tracked their subsequent movements at high resolution and for long durations. Homing success was high and cannot be explained by random chance or landmark navigation, implying true navigation. Although highly motivated to return home, the homing trajectories of translocated birds exhibited a distinct, two-phase pattern resembling the map and compass stages: a long, tortuous wandering phase without consistent approach home, followed by a short and direct return phase. Birds retranslocated to the same site initially repeated the original wandering path but switched to the return phase earlier and after covering a smaller area; they returned home via a different path but with similar movement properties. We thus propose the map learning hypothesis, asserting that birds resolve the map by acquiring, potentially through learning, the relevant navigation cues during the wandering phase.


Assuntos
Charadriiformes/fisiologia , Comportamento de Retorno ao Território Vital , Animais , Sinais (Psicologia) , Aprendizagem Espacial
18.
J Anim Ecol ; 85(4): 938-47, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27046512

RESUMO

Migration conveys an immense challenge, especially for juvenile birds coping with enduring and risky journeys shortly after fledging. Accordingly, juveniles exhibit considerably lower survival rates compared to adults, particularly during migration. Juvenile white storks (Ciconia ciconia), which are known to rely on adults during their first fall migration presumably for navigational purposes, also display much lower annual survival than adults. Using detailed GPS and body acceleration data, we examined the patterns and potential causes of age-related differences in fall migration properties of white storks by comparing first-year juveniles and adults. We compared juvenile and adult parameters of movement, behaviour and energy expenditure (estimated from overall dynamic body acceleration) and placed this in the context of the juveniles' lower survival rate. Juveniles used flapping flight vs. soaring flight 23% more than adults and were estimated to expend 14% more energy during flight. Juveniles did not compensate for their higher flight costs by increased refuelling or resting during migration. When juveniles and adults migrated together in the same flock, the juvenile flew mostly behind the adult and was left behind when they separated. Juveniles showed greater improvement in flight efficiency throughout migration compared to adults which appears crucial because juveniles exhibiting higher flight costs suffered increased mortality. Our findings demonstrate the conflict between the juveniles' inferior flight skills and their urge to keep up with mixed adult-juvenile flocks. We suggest that increased flight costs are an important proximate cause of juvenile mortality in white storks and likely in other soaring migrants and that natural selection is operating on juvenile variation in flight efficiency.


Assuntos
Migração Animal/fisiologia , Aves/fisiologia , Voo Animal/fisiologia , Mortalidade , Fatores Etários , Animais , Comportamento Animal , Metabolismo Energético , Tecnologia de Sensoriamento Remoto , Comportamento Social
19.
Environ Manage ; 56(4): 791-801, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26099570

RESUMO

Substantial advances have been made in our understanding of the movement of species, including processes such as dispersal and migration. This knowledge has the potential to improve decisions about biodiversity policy and management, but it can be difficult for decision makers to readily access and integrate the growing body of movement science. This is, in part, due to a lack of synthesis of information that is sufficiently contextualized for a policy audience. Here, we identify key species movement concepts, including mechanisms, types, and moderators of movement, and review their relevance to (1) national biodiversity policies and strategies, (2) reserve planning and management, (3) threatened species protection and recovery, (4) impact and risk assessments, and (5) the prioritization of restoration actions. Based on the review, and considering recent developments in movement ecology, we provide a new framework that draws links between aspects of movement knowledge that are likely the most relevant to each biodiversity policy category. Our framework also shows that there is substantial opportunity for collaboration between researchers and government decision makers in the use of movement science to promote positive biodiversity outcomes.


Assuntos
Distribuição Animal/fisiologia , Conservação dos Recursos Naturais/métodos , Ecologia/métodos , Formulação de Políticas , Migração Animal/fisiologia , Animais , Biodiversidade , Conservação dos Recursos Naturais/legislação & jurisprudência , Tomada de Decisões , Regulamentação Governamental , Guias como Assunto , Medição de Risco
20.
Ecol Lett ; 17(6): 670-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24641086

RESUMO

Aerodynamic theory postulates that gliding airspeed, a major flight performance component for soaring avian migrants, scales with bird size and wing morphology. We tested this prediction, and the role of gliding altitude and soaring conditions, using atmospheric simulations and radar tracks of 1346 birds from 12 species. Gliding airspeed did not scale with bird size and wing morphology, and unexpectedly converged to a narrow range. To explain this discrepancy, we propose that soaring-gliding birds adjust their gliding airspeed according to the risk of grounding or switching to costly flapping flight. Introducing the Risk Aversion Flight Index (RAFI, the ratio of actual to theoretical risk-averse gliding airspeed), we found that inter- and intraspecific variation in RAFI positively correlated with wing loading, and negatively correlated with convective thermal conditions and gliding altitude, respectively. We propose that risk-sensitive behaviour modulates the evolution (morphology) and ecology (response to environmental conditions) of bird soaring flight.


Assuntos
Migração Animal , Aves/anatomia & histologia , Aves/fisiologia , Voo Animal/fisiologia , Animais , Comportamento Animal/fisiologia , Evolução Biológica , Fenômenos Biomecânicos , Especificidade da Espécie , Asas de Animais/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA