Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Metab ; 5(7): 1188-1203, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37414931

RESUMO

Although multiple populations of macrophages have been described in the human liver, their function and turnover in patients with obesity at high risk of developing non-alcoholic fatty liver disease (NAFLD) and cirrhosis are currently unknown. Herein, we identify a specific human population of resident liver myeloid cells that protects against the metabolic impairment associated with obesity. By studying the turnover of liver myeloid cells in individuals undergoing liver transplantation, we find that liver myeloid cell turnover differs between humans and mice. Using single-cell techniques and flow cytometry, we determine that the proportion of the protective resident liver myeloid cells, denoted liver myeloid cells 2 (LM2), decreases during obesity. Functional validation approaches using human 2D and 3D cultures reveal that the presence of LM2 ameliorates the oxidative stress associated with obese conditions. Our study indicates that resident myeloid cells could be a therapeutic target to decrease the oxidative stress associated with NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Células Mieloides/metabolismo , Estresse Fisiológico
2.
Free Radic Biol Med ; 162: 1-13, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249137

RESUMO

Modern lifestyles, including lack of physical activity and poor nutritional habits, are driving the rapidly increasing prevalence of obesity and type 2 diabetes. Increased levels of free fatty acids (FFAs), particularly saturated FFAs, in obese individuals have been linked to pancreatic ß-cell failure. This process, termed lipotoxicity, involves activation of several stress responses, including ER stress and oxidative stress. However, the molecular underpinnings and causal relationships between the disparate stress responses remain unclear. Here we employed transgenic mice, expressing a genetically-encoded cytosolic H2O2 sensor, roGFP2-Orp1, to monitor dynamic changes in H2O2 levels in pancreatic islets in response to chronic palmitate exposure. We identified a transient increase in H2O2 levels from 4 to 8 h after palmitate addition, which was mirrored by a concomitant decrease in cellular NAD(P)H levels. Intriguingly, islets isolated from NOX2 knock-out mice displayed no H2O2 transient upon chronic palmitate treatment. Furthermore, NOX2 knockout rescued palmitate-dependent impairment of insulin secretion, calcium homeostasis and viability. Chemical inhibition of NOX activity protected islets from palmitate-induced impairment in insulin secretion, however had no detectable impact upon the induction of ER stress. In summary, our results reveal that transient NOX2-dependent H2O2 production is a likely cause of early palmitate-dependent lipotoxic effects.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Peróxido de Hidrogênio , Insulina , Camundongos , NADPH Oxidase 2/genética , Palmitatos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA