Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903644

RESUMO

Lithium peroxide is the crucial storage material in lithium-air batteries. Understanding the redox properties of this salt is paramount toward improving the performance of this class of batteries. Lithium peroxide, upon exposure to p-benzoquinone (p-C6H4O2) vapor, develops a deep blue color. This blue powder can be formally described as [Li2O2][Formula: see text] [LiO2][Formula: see text] {Li[p-C6H4O2]}0.7, though spectroscopic characterization indicates a more nuanced structural speciation. Infrared, Raman, electron paramagnetic resonance, diffuse-reflectance ultraviolet-visible and X-ray absorption spectroscopy reveal that the lithium salt of the benzoquinone radical anion forms on the surface of the lithium peroxide, indicating the occurrence of electron and lithium ion transfer in the solid state. As a result, obligate lithium superoxide is formed and encapsulated in a shell of Li[p-C6H4O2] with a core of Li2O2 Lithium superoxide has been proposed as a critical intermediate in the charge/discharge cycle of Li-air batteries, but has yet to be isolated, owing to instability. The results reported herein provide a snapshot of lithium peroxide/superoxide chemistry in the solid state with redox mediation.


Assuntos
Benzoquinonas/química , Compostos de Lítio/química , Lítio/química , Peróxidos/química , Superóxidos/química , Modelos Químicos
2.
Nano Lett ; 22(1): 366-371, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34965139

RESUMO

Intracellular cargo delivery is a critical and challenging step in controlling cell states. Silicon nanowire (NW) arrays have emerged as a powerful platform for accessing the intracellular space through a combination of their nanoscale dimensions and electrical properties. Here, we develop and characterize a conductive polypyrrole (PPy)-NW device for temporally controlled intracellular delivery. Fluorescent cargos, doped in electroresponsive PPy matrices at wire tips as well as entire NW arrays, are released with an applied reducing potential. Intracellular delivery into endothelial cells from PPy-Si substrates demonstrated comparable kinetics to solution-based delivery methods while requiring an order of magnitude less cargo loading. This hybrid polymer-semiconductor platform extends methods available for intracellular delivery and links electrical signaling from artificial systems with living molecular transduction.


Assuntos
Nanofios , Células Endoteliais , Nanofios/química , Polímeros/química , Pirróis/química , Silício/química
3.
J Am Chem Soc ; 143(35): 14352-14359, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34432978

RESUMO

Super-reducing excited states have the potential to activate strong bonds, leading to unprecedented photoreactivity. Excited states of radical anions, accessed via reduction of a precatalyst followed by light absorption, have been proposed to drive photoredox transformations under super-reducing conditions. Here, we investigate the radical anion of naphthalene monoimide as a photoreductant and find that the radical doublet excited state has a lifetime of 24 ps, which is too short to facilitate photoredox activity. To account for the apparent photoreactivity of the radical anion, we identify an emissive two-electron reduced Meisenheimer complex of naphthalene monoimide, [NMI(H)]-. The singlet excited state of [NMI(H)]- is a potent reductant (-3.08 V vs Fc/Fc+), is long-lived (20 ns), and its emission can be dynamically quenched by chloroarenes to drive a radical photochemistry, establishing that it is this emissive excited state that is competent for reported C-C and C-P coupling reactivity. These results provide a mechanistic basis for photoreactivity at highly reducing potentials via singlet excited state manifolds and lays out a clear path for the development of exceptionally reducing photoreagents derived from electron-rich closed-shell anions.

4.
Proc Natl Acad Sci U S A ; 115(23): 5866-5871, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29773708

RESUMO

Sulfur monoxide (SO) is a highly reactive molecule and thus, eludes bulk isolation. We report here on synthesis and reactivity of a molecular precursor for SO generation, namely 7-sulfinylamino-7-azadibenzonorbornadiene (1). This compound has been shown to fragment readily driven by dinitrogen expulsion and anthracene formation on heating in the solid state and in solution, releasing SO at mild temperatures (<100 °C). The generated SO was detected in the gas phase by MS and rotational spectroscopy. In solution, 1 allows for SO transfer to organic molecules as well as transition metal complexes.

5.
J Phys Chem A ; 124(12): 2427-2435, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32118434

RESUMO

The high resolution far-infrared spectrum of trans-butadiene has been reinvestigated by Fourier-transform spectroscopy at two synchrotron radiation facilities, SOLEIL and the Canadian Light Source, at temperatures ranging from 50 to 340 K. Beyond the well-studied bands, two new fundamental bands lying below 1100 cm-1, ν10 and ν24, have been assigned using a combination of cross-correlation (ASAP software) and Loomis-Wood type (LWWa software) diagrams. While the ν24 analysis was rather straightforward, ν10 exhibits obvious signs of a strong perturbation, presumably owing to interaction with the dark ν9 + ν12 state. Effective rotational constants have been derived for both the v10 = 1 and v24 = 1 states. Since only one weak, infrared active fundamental band (ν23) of trans-butadiene remains to be observed at high resolution in the far-infrared, searches for the elusive gauche conformer can now be undertaken with considerably greater confidence in the dense ro-vibrational spectrum of the trans form.

6.
J Am Chem Soc ; 141(1): 431-440, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30512942

RESUMO

Thermolysis of a pair of dibenzo-7-phosphanorbornadiene compounds is shown to lead to differing behaviors: phosphinidene sulfide release and formation of amorphous P2S. These compounds, tBuP(S)A (1, A = C14H10 or anthracene; 59% isol. yield) and HP(S)A (2; 63%), are available through thionation of tBuPA and the new secondary phosphine HPA (5), prepared from Me2NPA and DIBAL-H in 50% yield. Phosphinidene sulfide [ tBuP═S] transfer is shown to proceed efficiently from 1 to 2,3-dimethyl-1,3-butadiene to form Diels-Alder product 3 with a zero-order dependence on diene. Platinum complex (Ph3P)2Pt(η2- tBuPS) (4, 47%) is also accessed from 1 and structurally characterized. In contrast, heating parent species 2 (3 h, 135 °C) under vacuum instead produces an insoluble, nonvolatile yellow residual material 6 of composition P2S that displays semiconductor properties with an optical band gap of 2.4 eV. Material 6 obtained in this manner from molecular precursor 2 is in a poorly characterized portion of the phosphorus-sulfur phase diagram and has therefore been subjected to a range of spectroscopic techniques to gain structural insight. X-ray spectroscopic and diffraction techniques, including Raman, XANES, EXAFS, and PDF, reveal 6 to have similarities with related compounds including P4S3, Hittorf's violet phosphorus. Various possible structures have been explored as well using quantum chemical calculations under the constraint that each phosphorus atom is trivalent with no terminal sulfide groups, and each sulfur atom is divalent. The structural conclusions are supported by data from phosphorus-31 magic angle spinning (MAS) solid state NMR spectroscopy, bolstering the structural comparisons to other phosphorus-sulfur systems while excluding the formulation of P2S as a simple mixture of P4S3 and phosphorus.


Assuntos
Antracenos/química , Fósforo/química , Sulfetos/química , Enxofre/química , Cor , Modelos Moleculares , Conformação Molecular
7.
J Am Chem Soc ; 140(51): 17985-17991, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30485736

RESUMO

A series of dibenzo-7-phosphanorbornadiene compounds, Ph3PC(R)PA (1-R; A = C14H10, anthracene; R = Me, Et, iPr, sBu), are reported to be capable of thermal fragmentation to generate alkyl-substituted phosphaalkynes (RC≡P) concomitant with triphenylphosphine and anthracene. Facile preparation of these molecular precursors proceeds by treatment of ClPA with the appropriate ylide Ph3P═CHR (2 equiv). For methyl, ethyl, and isopropyl substituents, the phosphaalkyne conversions are measured to be 56-73% in solution by quantitative 31P NMR spectroscopy. In the case of compound 1-Me, the kinetic profile of its spontaneous unimolecular fragmentation is investigated by an Eyring analysis. The resulting 1-phosphapropyne is directly detected by solution NMR spectroscopy and gas phase rotational microwave spectroscopy. The latter technique allows for the first time measurement of the phosphorus-31 nuclear spin-rotation coupling tensor. The nuclear spin-rotation coupling provides a link between rotational and NMR spectroscopies, and is contextualized in relation to the chemical shift anisotropy.

8.
Angew Chem Int Ed Engl ; 57(7): 1821-1825, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29239124

RESUMO

The planarity of the second stable conformer of 1,3-butadiene, the archetypal diene for the Diels-Alder reaction in which a planar conjugated diene and a dienophile combine to form a ring, is not established. The most recent high level calculations predicted the species to adopt a twisted, gauche structure owing to steric interactions between the inner terminal hydrogens rather than a planar, cis structure favored by the conjugation of the double bonds. The structure cis-1,3-butadiene is unambiguously confirmed experimentally to indeed be gauche with a substantial dihedral angle of 34°, in excellent agreement with theory. Observation of two tunneling components indicates that the molecule undergoes facile interconversion between two equivalent enantiomeric forms. Comparison of experimentally determined structures for gauche- and trans-butadiene provides an opportunity to examine the effects of conjugation and steric interactions.

9.
J Am Chem Soc ; 139(31): 10822-10831, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28703579

RESUMO

Dibenzo-7-phosphanorbornadiene compounds, RPA (A = C14H10 or anthracene), are investigated as phosphinidene sources upon thermally induced (70-90 °C) anthracene elimination. Analysis of substituent effects reveals that π-donating dialkylamide groups are paramount to successful phosphinidene transfer; poorer π-donors give reduced or no transfer. Substituent steric bulk is also implicated in successful transfer. Molecular beam mass spectrometry (MBMS) studies of each derivative reveal dialkylamide derivatives to be promising precursors for further gas-phase spectroscopic studies of phosphinidenes; in particular, we present evidence of direct detection of the dimethylamide derivative, [Me2N═P]. Kinetic investigations of iPr2NPA thermolysis in 1,3-cyclohexadiene and/or benzene-d6 are consistent with a model of unimolecular fragmentation to yield free phosphinidene [iPr2N═P] as a transient reactive intermediate. This conclusion is probed by density functional theory (DFT) calculations, which favored a mechanistic model featuring free singlet aminophosphinidenes. The breadth of phosphinidene acceptors is expanded to unsaturated substrates beyond 1,3-dienes to include olefins and alkynes; this provides a new synthetic route to valuable amino-substituted phosphiranes and phosphirenes, respectively. Stereoselective phosphinidene transfer to olefins is consistent with singlet phosphinidene reactivity by analogy with the Skell hypothesis for singlet carbene addition to olefins.

10.
J Am Chem Soc ; 138(21): 6731-4, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27171847

RESUMO

Dibenzo-7-phosphanorbornadiene Ph3PC(H)PA (1, A = C14H10, anthracene) is reported here as a molecular precursor to phosphaethyne (HC≡P), produced together with anthracene and triphenylphosphine. HCP generated by thermolysis of 1 has been observed by molecular beam mass spectrometry, laser-induced fluorescence, microwave spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. In toluene, fragmentation of 1 has been found to proceed with activation parameters of ΔH(⧧) = 25.5 kcal/mol and ΔS(⧧) = -2.43 eu and is accompanied by formation of an orange insoluble precipitate. Results from computational studies of the mechanism of HCP generation are in good agreement with experimental data. This high-temperature method of HCP generation has pointed to new reaction chemistry with azide anion to produce the 1,2,3,4-phosphatriazolate anion, HCPN3(-), for which structural data have been obtained in a single-crystal X-ray diffraction study. Negative-ion photoelectron spectroscopy has shown the adiabatic detachment energy for this anion to be 3.555(10) eV. The aromaticity of HCPN3(-) has been assessed using nucleus-independent chemical shift, quantum theory of atoms in molecules, and natural bond orbital methods.

11.
J Am Chem Soc ; 138(36): 11441-4, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27540860

RESUMO

Thionitrous acid (HSNO), a potential key intermediate in biological signaling pathways, has been proposed to link NO and H2S biochemistries, but its existence and stability in vivo remain controversial. We establish that HSNO is spontaneously formed in high concentration when NO and H2S gases are mixed at room temperature in the presence of metallic surfaces. Our measurements reveal that HSNO is formed by the reaction H2S + N2O3 → HSNO + HNO2, where N2O3 is a product of NO disproportionation. These studies also suggest that further reaction of HSNO with H2S may form HNO and HSSH. The length of the S-N bond has been derived to high precision and is found to be unusually long: 1.84 Å, the longest S-N bond reported to date for an R-SNO compound. The present structural and, particularly, reactivity investigations of this elusive molecule provide a firm foundation to better understand its potential physiological chemistry and propensity to undergo S-N bond cleavage in vivo.

12.
Inorg Chem ; 55(12): 6178-85, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27267865

RESUMO

Metaphosphate acids cannot be thoroughly studied in aqueous media because their acidity is leveled by the solvent, and the resulting metaphosphates are susceptible to acid-catalyzed hydrolysis. Exploration of metaphosphate acid chemistry has now been made possible with the development of a general synthetic method for organic media soluble metaphosphate acids. Protonation of the [PPN](+) salts ([PPN](+) = [N(PPh3)2](+)) of tri-, tetra-, and hexametaphosphates results in five new metaphosphate acids, [PPN]2[P3O9H] (2), [PPN]4[(P4O12)3H8] (3), [PPN]4[P6O18H2]·2H2O (4), [PPN]3[P6O18H3] (5), and [PPN]2[P6O18H2(H3O)2] (6), obtained in yields of 80, 71, 66, 88, and 76%, respectively. Additionally, our synthetic method can be extended to pyrophosphate to produce [PPN][P2O7H3] (7) in 77% yield. The structural configurations of these oxoacids are dictated by strong hydrogen bonds and the anticooperative effect. Intramolecular hydrogen bonds are observed in 2, 4, and 5 and the previously reported [PPN]2[P4O12H2] (1), while intermolecular hydrogen bonds are observed in 3, 6, and 7. The hydrogen bonds in 3-7 possess short distances and are classified as low-barrier hydrogen bonds. Gas-phase acidity computations reveal that the parent tri- and tetrametaphosphoric acids are superacids. Their remarkable acidity is attributable to the stabilization of their corresponding conjugate bases via intramolecular hydrogen bonding.

13.
J Am Chem Soc ; 137(46): 14562-5, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26465825

RESUMO

The reactivity of peroxide dianion O2(2-) has been scarcely explored in organic media due to the lack of soluble sources of this reduced oxygen species. We now report the finding that the encapsulated peroxide cryptate, [O2⊂mBDCA-5t-H6](2-) (1), reacts with carbon monoxide in organic solvents at 40 °C to cleanly form an encapsulated carbonate. Characterization of the resulting hexacarboxamide carbonate cryptate by single crystal X-ray diffraction reveals that carbonate dianion forms nine complementary hydrogen bonds with the hexacarboxamide cryptand, [CO3⊂mBDCA-5t-H6](2-) (2), a conclusion that is supported by spectroscopic data. Labeling studies and (17)O solid-state NMR data confirm that two-thirds of the oxygen atoms in the encapsulated carbonate derive from peroxide dianion, while the carbon is derived from CO. Further evidence for the formation of a carbonate cryptate was obtained by three methods of independent synthesis: treatment of (i) free cryptand with K2CO3; (ii) monodeprotonated cryptand with PPN[HCO3]; and (iii) free cryptand with TBA[OH] and atmospheric CO2. This work demonstrates CO oxidation mediated by a hydrogen-bonding anion receptor, constituting an alternative to transition-metal catalysis.

14.
J Am Chem Soc ; 136(34): 11894-7, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25102033

RESUMO

Dihydrogen tetrametaphosphate [P4O12H2](2-) (1) can now be synthesized and isolated as its PPN salt ([PPN](+) = [N(PPh3)2](+)) via treatment of [PPN]4[P4O12] with trifluoroacetic anhydride in wet acetone; this simple procedure affords the oxoacid salt in 94% yield. A pKa of 15.83 ± 0.11 in acetonitrile was determined. [P4O12H2](2-) reacts with the dehydrating agent N,N'-dicyclohexylcarbodiimide to afford tetrametaphosphate anhydride [P4O11](2-) (2) in 82% yield, also as the PPN salt. From 2 a monohydrogen tetrametaphosphate ester [P4O10(OH)(OMe)](2-) (3, 96%) was derived by addition of methanol, illustrating that 2 can function as a reagent for chemical phosphorylation. Addition of water to 2 regenerates 1 quantitatively. Deprotonation of 1 by metal amides in the +2 oxidation state led to the unconventional monomeric tin(II) κ(4) tetrametaphosphate [Sn(P4O12)](2-) (4, 78%, a molecular analog of SnO) and binary dimeric chromium(II) bis(µ2,κ(2),κ(2)) derivative [Cr2(P4O12)2](4-) (5, 82%). Structural data stemming from single-crystal X-ray diffraction studies for the PPN salts of anions 1-5 are also reported.

15.
J Am Chem Soc ; 136(39): 13586-9, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25198657

RESUMO

The transannular diphosphorus bisanthracene adduct P2A2 (A = anthracene or C14H10) was synthesized from the 7-phosphadibenzonorbornadiene Me2NPA through a synthetic sequence involving chlorophosphine ClPA (28-35%) and the tetracyclic salt [P2A2Cl][AlCl4] (65%) as isolated intermediates. P2A2 was found to transfer P2 efficiently to 1,3-cyclohexadiene (CHD), 1,3-butadiene (BD), and (C2H4)Pt(PPh3)2 to form P2(CHD)2 (>90%), P2(BD)2 (69%), and (P2)[Pt(PPh3)2]2 (47%), respectively, and was characterized by X-ray diffraction as the complex [CpMo(CO)3(P2A2)][BF4]. Experimental and computational thermodynamic activation parameters for the thermolysis of P2A2 in a solution containing different amounts of CHD (0, 4.75, and 182 equiv) have been obtained and suggest that P2A2 thermally transfers P2 to CHD through two competitive routes: (i) an associative pathway in which reactive intermediate [P2A] adds the first molecule of CHD before departure of the second anthracene, and (ii) a dissociative pathway in which [P2A] fragments to P2 and A prior to addition of CHD. Additionally, a molecular beam mass spectrometry study on the thermolysis of solid P2A2 reveals the direct detection of molecular fragments of only P2 and anthracene, thus establishing a link between solution-phase P2-transfer chemistry and production of gas-phase P2 by mild thermal activation of a molecular precursor.

16.
Inorg Chem ; 53(10): 5384-91, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24773522

RESUMO

A peroxide dianion (O2(2-)) can be isolated within the cavity of hexacarboxamide cryptand, [(O2)⊂mBDCA-5t-H6](2-), stabilized by hydrogen bonding but otherwise free of proton or metal-ion association. This feature has allowed the electron-transfer (ET) kinetics of isolated peroxide to be examined chemically and electrochemically. The ET of [(O2)⊂mBDCA-5t-H6](2-) with a series of seven quinones, with reduction potentials spanning 1 V, has been examined by stopped-flow spectroscopy. The kinetics of the homogeneous ET reaction has been correlated to heterogeneous ET kinetics as measured electrochemically to provide a unified description of ET between the Butler-Volmer and Marcus models. The chemical and electrochemical oxidation kinetics together indicate that the oxidative ET of O2(2-) occurs by an outer-sphere mechanism that exhibits significant nonadiabatic character, suggesting that the highest occupied molecular orbital of O2(2-) within the cryptand is sterically shielded from the oxidizing species. An understanding of the ET chemistry of a free peroxide dianion will be useful in studies of metal-air batteries and the use of [(O2)⊂mBDCA-5t-H6](2-) as a chemical reagent.


Assuntos
Peróxidos/química , Técnicas Eletroquímicas , Transporte de Elétrons , Íons/química , Cinética , Oxirredução
17.
Angew Chem Int Ed Engl ; 53(4): 1131-4, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24339386

RESUMO

What is the strongest acid? Can a simple Brønsted acid be prepared that can protonate an alkane at room temperature? Can that acid be free of the complicating effects of added Lewis acids that are typical of common, difficult-to-handle superacid mixtures? The carborane superacid H(CHB11 F11 ) is that acid. It is an extremely moisture-sensitive solid, prepared by treatment of anhydrous HCl with [Et3 SiHSiEt3 ][CHB11 F11 ]. It adds H2 O to form [H3 O][CHB11 F11 ] and benzene to form the benzenium ion salt [C6 H7 ][CHB11 F11 ]. It reacts with butane to form a crystalline tBu(+) salt and with n-hexane to form an isolable hexyl carbocation salt. Carbocations, which are thus no longer transient intermediates, react with NaH either by hydride addition to re-form an alkane or by deprotonation to form an alkene and H2 . By protonating alkanes at room temperature, the reactivity of H(CHB11 F11 ) opens up new opportunities for the easier study of acid-catalyzed hydrocarbon reforming.

18.
Science ; 383(6680): 279-284, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38096334

RESUMO

Molecular Ag(II) complexes are superoxidizing photoredox catalysts capable of generating radicals from redox-reticent substrates. In this work, we exploited the electrophilicity of Ag(II) centers in [Ag(bpy)2(TFA)][OTf] and Ag(bpy)(TFA)2 (bpy, 2,2'-bipyridine; OTf, CF3SO3-) complexes to activate trifluoroacetate (TFA) by visible light-induced homolysis. The resulting trifluoromethyl radicals may react with a variety of arenes to forge C(sp2)-CF3 bonds. This methodology is general and extends to other perfluoroalkyl carboxylates of higher chain length (RFCO2-; RF, CF2CF3 or CF2CF2CF3). The photoredox reaction may be rendered electrophotocatalytic by regenerating the Ag(II) complexes electrochemically during irradiation. Electrophotocatalytic perfluoroalkylation of arenes at turnover numbers exceeding 20 was accomplished by photoexciting the Ag(II)-TFA ligand-to-metal charge transfer (LMCT) state, followed by electrochemical reoxidation of the Ag(I) photoproduct back to the Ag(II) photoreactant.

19.
Inorg Chem ; 49(11): 4726-8, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20450167

RESUMO

Unlike the "parent" carborane anion CHB(11)H(11)(-), halogenated carborane anions such as CHB(11)H(5)Br(6)(-) can be readily C-functionalized in high yield and purity, enhancing their utility as weakly coordinating anions.


Assuntos
Boranos/química , Compostos Organometálicos/síntese química , Ânions/química , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/química , Estereoisomerismo
20.
Chem Commun (Camb) ; 53(83): 11500-11503, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28990025

RESUMO

Targeted as an example of a compound composed of a carbon atom together with two stable neutral leaving groups, 7-isocyano-7-azadibenzonorbornadiene, CN2A (1, A = C14H10 or anthracene) has been synthesized and spectroscopically and structurally characterized. The terminal C atom of 1 can be transferred: mesityl nitrile oxide reacts with 1 to produce carbon monoxide, likely via intermediacy of the N-isocyanate OCN2A. Reaction of 1 with [RuCl2(CO)(PCy3)2] leads to [RuCl2(CO)(1)(PCy3)2] which decomposes unselectively: in the product mixture, the carbide complex [RuCl2(C)(PCy3)2] was detected. Upon heating in the solid state or in solution, 1 decomposes to A, N2 and cyanogen (C2N2) as substantiated using molecular beam mass spectrometry, IR and NMR spectroscopy techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA