Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Opt Soc Am A Opt Image Sci Vis ; 40(4): 692-702, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37132963

RESUMO

The two-dimensional phase unwrapping problem (PHUP) has been solved with discrete Fourier transforms (FTs) and many other techniques traditionally. Nevertheless, a formal way of solving the continuous Poisson equation for the PHUP, with the use of continuous FT and based on distribution theory, has not been reported yet, to our knowledge. The well-known specific solution of this equation is given in general by a convolution of a continuous Laplacian estimate with a particular Green function, whose FT does not exist mathematically. However, an alternative Green function called the Yukawa potential, with a guaranteed Fourier spectrum, can be considered for solving an approximated Poisson equation, inducing a standard procedure of a FT-based unwrapping algorithm. Thus, the general steps for this approach are described in this work by considering some reconstructions with synthetic and real data.

2.
Mar Drugs ; 19(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923820

RESUMO

Long-chain (C20-24) polyunsaturated fatty acids (LC-PUFAs) are essential nutrients that are mostly produced in marine ecosystems. Previous studies suggested that gammarids have some capacity to endogenously produce LC-PUFAs. This study aimed to investigate the repertoire and functions of elongation of very long-chain fatty acid (Elovl) proteins in gammarids. Our results show that gammarids have, at least, three distinct elovl genes with putative roles in LC-PUFA biosynthesis. Phylogenetics allowed us to classify two elongases as Elovl4 and Elovl6, as they were bona fide orthologues of vertebrate Elovl4 and Elovl6. Moreover, a third elongase was named as "Elovl1/7-like" since it grouped closely to the Elovl1 and Elovl7 found in vertebrates. Molecular analysis of the deduced protein sequences indicated that the gammarid Elovl4 and Elovl1/7-like were indeed polyunsaturated fatty acid (PUFA) elongases, whereas Elovl6 had molecular features typically found in non-PUFA elongases. This was partly confirmed in the functional assays performed on the marine gammarid Echinogammarus marinus Elovl, which showed that both Elovl4 and Elovl1/7-like elongated PUFA substrates ranging from C18 to C22. E. marinus Elovl6 was only able to elongate C18 PUFA substrates, suggesting that this enzyme does not play major roles in the LC-PUFA biosynthesis of gammarids.


Assuntos
Anfípodes/enzimologia , Clonagem Molecular , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/biossíntese , Anfípodes/genética , Animais , Evolução Molecular , Elongases de Ácidos Graxos/genética , Regulação Enzimológica da Expressão Gênica , Filogenia , Especificidade por Substrato
3.
Mar Drugs ; 15(3)2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28335553

RESUMO

Polyunsaturated fatty acids (PUFAs) have been acknowledged as essential nutrients for cephalopods but the specific PUFAs that satisfy the physiological requirements are unknown. To expand our previous investigations on characterisation of desaturases and elongases involved in the biosynthesis of PUFAs and hence determine the dietary PUFA requirements in cephalopods, this study aimed to investigate the roles that a stearoyl-CoA desaturase (Scd) and an elongation of very long-chain fatty acid 4 (Elovl4) protein play in the biosynthesis of essential fatty acids (FAs). Our results confirmed the Octopus vulgaris Scd is a ∆9 desaturase with relatively high affinity towards saturated FAs with ≥ C18 chain lengths. Scd was unable to desaturate 20:1n-15 (∆520:1) suggesting that its role in the biosynthesis of non-methylene interrupted FAs (NMI FAs) is limited to the introduction of the first unsaturation at ∆9 position. Interestingly, the previously characterised ∆5 fatty acyl desaturase was indeed able to convert 20:1n-9 (∆1120:1) to ∆5,1120:2, an NMI FA previously detected in octopus nephridium. Additionally, Elovl4 was able to mediate the production of 24:5n-3 and thus can contribute to docosahexaenoic acid (DHA) biosynthesis through the Sprecher pathway. Moreover, the octopus Elovl4 was confirmed to play a key role in the biosynthesis of very long-chain (>C24) PUFAs.


Assuntos
Acetiltransferases/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/biossíntese , Octopodiformes/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Proteínas de Peixes/metabolismo , Alinhamento de Sequência
4.
J Lipid Res ; 55(7): 1408-19, 2014 07.
Artigo em Inglês | MEDLINE | ID: mdl-24792929

RESUMO

Currently existing data show that the capability for long-chain PUFA (LC-PUFA) biosynthesis in teleost fish is more diverse than in other vertebrates. Such diversity has been primarily linked to the subfunctionalization that teleostei fatty acyl desaturase (Fads)2 desaturases have undergone during evolution. We previously showed that Chirostoma estor, one of the few representatives of freshwater atherinopsids, had the ability for LC-PUFA biosynthesis from C18 PUFA precursors, in agreement with this species having unusually high contents of DHA. The particular ancestry and pattern of LC-PUFA biosynthesis activity of C. estor make this species an excellent model for study to gain further insight into LC-PUFA biosynthetic abilities among teleosts. The present study aimed to characterize cDNA sequences encoding fatty acyl elongases and desaturases, key genes involved in the LC-PUFA biosynthesis. Results show that C. estor expresses an elongase of very long-chain FA (Elovl)5 elongase and two Fads2 desaturases displaying Δ4 and Δ6/Δ5 specificities, thus allowing us to conclude that these three genes cover all the enzymatic abilities required for LC-PUFA biosynthesis from C18 PUFA. In addition, the specificities of the C. estor Fads2 enabled us to propose potential evolutionary patterns and mechanisms for subfunctionalization of Fads2 among fish lineages.


Assuntos
Ácidos Graxos Dessaturases , Ácidos Graxos Insaturados , Proteínas de Peixes , Peixes , Animais , Ácidos Graxos Dessaturases/química , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Peixes/genética , Peixes/metabolismo , Especificidade por Substrato
5.
J Phys Chem A ; 118(14): 2599-611, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24678924

RESUMO

Formation of new particles through clustering of molecules from condensable vapors is a significant source for atmospheric aerosols. The smallest clusters formed in the very first steps of the condensation process are, however, not directly observable by experimental means. We present here a comprehensive series of electronic structure calculations on the hydrates of clusters formed by up to four molecules of sulfuric acid, and up to two molecules of ammonia or dimethylamine. Though clusters containing ammonia, and certainly dimethylamine, generally exhibit lower average hydration than the pure acid clusters, populations of individual hydrates vary widely. Furthermore, we explore the predictions obtained using a thermodynamic model for the description of these hydrates. The similar magnitude and trends of hydrate formation predicted by both methods illustrate the potential of combining them to obtain more comprehensive models. The stabilization of some clusters relative to others due to their hydration is highly likely to have significant effects on the overall processes that lead to formation of new particles in the atmosphere.


Assuntos
Atmosfera/química , Simulação de Dinâmica Molecular , Termodinâmica , Aerossóis/química , Amônia/química , Dimetilaminas/química , Elétrons , Ácidos Sulfúricos/química , Água/química
6.
Open Biol ; 14(6): 240069, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864244

RESUMO

Elongation of very long-chain fatty acid (Elovl) proteins plays pivotal functions in the biosynthesis of the physiologically essential long-chain polyunsaturated fatty acids (LC-PUFA). Polychaetes have important roles in marine ecosystems, contributing not only to nutrient recycling but also exhibiting a distinctive capacity for biosynthesizing LC-PUFA. To expand our understanding of the LC-PUFA biosynthesis in polychaetes, this study conducted a thorough molecular and functional characterization of Elovl occurring in the model organism Platynereis dumerilii. We identify six Elovl in the genome of P. dumerilii. The sequence and phylogenetic analyses established that four Elovl, identified as Elovl2/5, Elovl4 (two genes) and Elovl1/7, have putative functions in LC-PUFA biosynthesis. Functional characterization confirmed the roles of these elongases in LC-PUFA biosynthesis, demonstrating that P. dumerilii possesses a varied and functionally diverse complement of Elovl that, along with the enzymatic specificities of previously characterized desaturases, enables P. dumerilii to perform all the reactions required for the biosynthesis of the LC-PUFA. Importantly, we uncovered that one of the two Elovl4-encoding genes is remarkably long in comparison with any other animals' Elovl, which contains a C terminal KH domain unique among Elovl. The distinctive expression pattern of this protein in photoreceptors strongly suggests a central role in vision.


Assuntos
Elongases de Ácidos Graxos , Ácidos Graxos Insaturados , Filogenia , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/biossíntese , Animais , Elongases de Ácidos Graxos/metabolismo , Elongases de Ácidos Graxos/genética , Poliquetos/metabolismo , Poliquetos/genética , Acetiltransferases/metabolismo , Acetiltransferases/genética , Anelídeos/genética , Anelídeos/metabolismo
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(6): 159498, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38703945

RESUMO

The biosynthetic capability of the long-chain polyunsaturated fatty acids (LC-PUFA) in teleosts are highly diversified due to evolutionary events such as gene loss and subsequent neo- and/or sub-functionalisation of enzymes encoded by existing genes. In the present study, we have comprehensively characterised genes potentially involved in LC-PUFA biosynthesis, namely one front-end desaturase (fads2) and eight fatty acid elongases (elovl1a, elovl1b, elovl4a, elovl4b, elovl5, elovl7, elovl8a and elovl8b) from an amphidromous teleost, Ayu sweetfish, Plecoglossus altivelis. Functional analysis confirmed Fads2 with Δ6, Δ5 and Δ8 desaturase activities towards multiple PUFA substrates and several Elovl enzymes exhibited elongation capacities towards C18-20 or C18-22 PUFA substrates. Consequently, P. altivelis possesses a complete enzymatic capability to synthesise physiologically important LC-PUFA including arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) from their C18 precursors. Interestingly, the loss of elovl2 gene in P. altivelis was corroborated by genomic and phylogenetic analyses. However, this constraint would possibly be overcome by the function of alternative Elovl enzymes, such as Elovl1b, which has not hitherto been functionally characterised in teleosts. The present study contributes novel insights into LC-PUFA biosynthesis in the relatively understudied teleost group, Osmeriformes (Stomiati), thereby enhancing our understanding of the complement of LC-PUFA biosynthetic genes within teleosts.


Assuntos
Ácidos Graxos Dessaturases , Elongases de Ácidos Graxos , Ácidos Graxos Insaturados , Osmeriformes , Animais , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/genética , Osmeriformes/metabolismo , Osmeriformes/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos/metabolismo , Elongases de Ácidos Graxos/genética , Filogenia , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Vias Biossintéticas/genética , Acetiltransferases/metabolismo , Acetiltransferases/genética
8.
Mar Drugs ; 11(10): 3998-4018, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24152561

RESUMO

Virtually all polyunsaturated fatty acids (PUFA) originate from primary producers but can be modified by bioconversions as they pass up the food chain in a process termed trophic upgrading. Therefore, although the main primary producers of PUFA in the marine environment are microalgae, higher trophic levels have metabolic pathways that can produce novel and unique PUFA. However, little is known about the pathways of PUFA biosynthesis and metabolism in the levels between primary producers and fish that are largely filled by invertebrates. It has become increasingly apparent that, in addition to trophic upgrading, de novo synthesis of PUFA is possible in some lower animals. The unequivocal identification of PUFA biosynthetic pathways in many invertebrates is complicated by the presence of other organisms within them. These organisms include bacteria and algae with PUFA biosynthesis pathways, and range from intestinal flora to symbiotic relationships that can involve PUFA translocation to host organisms. This emphasizes the importance of studying biosynthetic pathways at a molecular level, and the continual expansion of genomic resources and advances in molecular analysis is facilitating this. The present paper highlights recent research into the molecular and biochemical mechanisms of PUFA biosynthesis in marine invertebrates, particularly focusing on cephalopod molluscs.


Assuntos
Organismos Aquáticos/metabolismo , Cefalópodes/metabolismo , Ácidos Graxos Insaturados/biossíntese , Invertebrados/metabolismo , Moluscos/metabolismo , Animais , Humanos
9.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1868(10): 159377, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37517549

RESUMO

Aquatic single-cell organisms have long been believed to be unique primary producers of omega-3 long-chain (≥C20) polyunsaturated fatty acids (ω3 LC-PUFA). Multiple invertebrates including annelids have been discovered to possess methyl-end desaturases enabling key steps in the de novo synthesis of ω3 LC-PUFA, and thus potentially contributing to their production in the ocean. Along methyl-end desaturases, the repertoire and function of further LC-PUFA biosynthesising enzymes is largely missing in Annelida. In this study we examined the front-end desaturase gene repertoire across the phylum Annelida, from Polychaeta and Clitellata, major classes of annelids comprising most annelid diversity. We further characterised the functions of the encoded enzymes in selected representative species by using a heterologous expression system based in yeast, demonstrating that functions of Annelida front-end desaturases have highly diversified during their expansion in both terrestrial and aquatic ecosystems. We concluded that annelids possess at least two front-end desaturases with Δ5 and Δ6Δ8 desaturase regioselectivities, enabling all the desaturation reactions required to convert the C18 precursors into the physiologically relevant LC-PUFA such as eicosapentaenoic and arachidonic acids, but not docosahexaenoic acid. Such a gene complement is conserved across the different taxonomic groups within Annelida.


Assuntos
Anelídeos , Ácidos Graxos Ômega-3 , Animais , Ecossistema , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Anelídeos/metabolismo
10.
Cureus ; 15(12): e51247, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38283480

RESUMO

Caterpillar venom has the potential to cause acute pain and systemic symptoms in individuals seeking medical attention in the jungles of Panama. Although this is not an obligatory notifiable disease, the hazards associated with exposure to this animal are widely recognized within the local community. Here, we present a case of a patient who sought medical attention after being rescued from a river in a Panamanian jungle after feeling acute pain in an upper extremity associated with shortness of breath and how tropical medicine teleconsult allowed for quick identification of the cause and assisted in the management. About his case, we examine the phenomenon of caterpillar envenomation and suggest that further research is needed to assess the potential impact of climate change on this disease. Of particular concern is the likelihood of an increase in contact accidents. We recommend that scientists and public health officials work together to understand the mechanisms of this disease better and to develop effective strategies for prevention and treatment. Our analysis underscores the importance of ongoing monitoring and surveillance to ensure we are prepared for future outbreaks.

11.
Open Biol ; 13(10): 230196, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37875161

RESUMO

Previous data revealed the unexpected presence of genes encoding for long-chain polyunsaturated fatty acid (LC-PUFA) biosynthetic enzymes in transcriptomes from freshwater gammarids but not in marine species, even though closely related species were compared. This study aimed to clarify the origin and occurrence of selected LC-PUFA biosynthesis gene markers across all published gammarid transcriptomes. Through systematic searches, we confirmed the widespread occurrence of sequences from seven elongases and desaturases involved in LC-PUFA biosynthesis, in transcriptomes from freshwater gammarids but not marine species, and clarified that such occurrence is independent from the gammarid species and geographical origin. The phylogenetic analysis established that the retrieved elongase and desaturase sequences were closely related to bdelloid rotifers, confirming that multiple transcriptomes from freshwater gammarids contain contaminating rotifers' genetic material. Using the Adineta steineri genome, we investigated the genomic location and exon-intron organization of the elongase and desaturase genes, establishing they are all genome-anchored and, importantly, identifying instances of horizontal gene transfer. Finally, we provide compelling evidence demonstrating Bdelloidea desaturases and elongases enable these organisms to perform all the reactions for de novo biosynthesis of PUFA and, from them, LC-PUFA, an advantageous trait when considering the low abundance of these essential nutrients in freshwater environments.


Assuntos
Ácidos Graxos Dessaturases , Transcriptoma , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Filogenia , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados , Água Doce
12.
Sci Rep ; 12(1): 10112, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710933

RESUMO

Very long-chain (> C24) polyunsaturated fatty acids (VLC-PUFA) play an important role in the development of nervous system, retinal function and reproductive processes in vertebrates. Their presence in very small amounts in specific lipid classes, the lack of reference standards and their late elution in chromatographic analyses render their identification and, most important, their quantification, still a challenge. Consequently, a sensitive and feasible analytical methodology is needed. In this work, we have studied the effect of chain length, as well as the number and position of unsaturations (or double bonds) on the response of GC-APCI-(Q)TOF MS, to establish an analytical method for VLC-PUFA quantification. The developed methodology allows the quantification of these compounds down to 2.5 × 10-3 pmol/mg lipid. The reduction of VLC-PUFA levels in lipid fractions of the organs from the herein sampled farmed fish suggesting a yet undetected effect on these compounds of high vegetable oil aquafeed formulations, that currently dominate the market.


Assuntos
Dourada , Animais , Encéfalo , Ácidos Graxos , Ácidos Graxos Insaturados/análise , Gônadas/química , Dourada/fisiologia
13.
Open Biol ; 11(4): 200402, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33906414

RESUMO

The long-standing paradigm establishing that global production of Omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA) derived almost exclusively from marine single-cell organisms, was recently challenged by the discovery that multiple invertebrates possess methyl-end (or ωx) desaturases, critical enzymes enabling the biosynthesis of n-3 LC-PUFA. However, the question of whether animals with ωx desaturases have complete n-3 LC-PUFA biosynthetic pathways and hence can contribute to the production of these compounds in marine ecosystems remained unanswered. In the present study, we investigated the complete enzymatic complement involved in the n-3 LC-PUFA biosynthesis in Tigriopus californicus, an intertidal harpacticoid copepod. A total of two ωx desaturases, five front-end desaturases and six fatty acyl elongases were successfully isolated and functionally characterized. The T. californicus ωx desaturases enable the de novo biosynthesis of C18 PUFA such as linoleic and α-linolenic acids, as well as several n-3 LC-PUFA from n-6 substrates. Functions demonstrated in front-end desaturases and fatty acyl elongases unveiled various routes through which T. californicus can biosynthesize the physiologically important arachidonic and eicosapentaenoic acids. Moreover, T. californicus possess a Δ4 desaturase, enabling the biosynthesis of docosahexaenoic acid via the 'Δ4 pathway'. In conclusion, harpacticoid copepods such as T. californicus have complete n-3 LC-PUFA biosynthetic pathways and such capacity illustrates major roles of these invertebrates in the provision of essential fatty acids to upper trophic levels.


Assuntos
Copépodes/fisiologia , Ácidos Docosa-Hexaenoicos/biossíntese , Regulação Enzimológica da Expressão Gênica , Metabolismo dos Lipídeos , Animais , Cromatografia Gasosa , Copépodes/classificação , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Redes e Vias Metabólicas , Filogenia
14.
Arch Environ Contam Toxicol ; 59(1): 137-46, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20037783

RESUMO

Polycyclic aromatic hydrocarbons (16 EPA list) were determined in oils, fish feed, and fillets from gilthead sea bream fed through a full production cycle (14 months) with feed containing different proportions of fish oil replaced by vegetable oils, followed by a finishing phase with fish oil. At the beginning of the study, fish presented 46.6 microg/kg fresh weight of the sum of PAHs in fillet and a benzo[a]pyrene equivalent value of 9.1 microg/kg fresh weight. These levels decreased after 330 days of rearing to values around 2 microg/kg. Although the concentration increased again during the finishing phase, they remained low. These low concentrations of PAHs could be the result of a dilution process associated with fish growth and with the detoxification pathways, both favored by the low levels of PAHs present in the feeds and the lack of any other potential source of contamination during the whole rearing period.


Assuntos
Ração Animal , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Dourada/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Métodos de Alimentação , Óleos de Peixe/química , Produtos Pesqueiros/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
15.
Artigo em Inglês | MEDLINE | ID: mdl-31669375

RESUMO

Elongation of very long-chain fatty acid 4 (Elovl4) proteins are involved in the biosynthesis of very long-chain (>C24) fatty acids and in many teleost fish species they are key enzymes in the pathway for the production of docosahexaenoic acid (DHA; 22:6n-3) from eicosapentaenoic acid (EPA; 20:5n-3). Therefore, Elovl4 may be particularly important in Atlantic bluefin tuna (ABT; Thunnus thynnus) characterised by having high DHA to EPA ratios. The present study cloned and characterised both the function and expression of an elovl4 cDNA from ABT. The Elovl4 had an open reading frame of 915 base pairs encoding a putative protein of 304 amino acids. Alignment and phylogenetic analyses indicated that the Elovl4 isoform identified in the present study was an Elovl4b. Functional characterisation demonstrated that the Elovl4b enzyme had elongase activity towards all the polyunsaturated fatty acid (PUFA) substrates assayed. The ABT Elovl4b contributed to DHA biosynthesis by elongation of EPA and DPA to 24:5n-3, the latter being desaturated to 24:6n-3 by the action of fads2 (Δ6 desaturase). Additionally, the ABT Elovl4b has a role in the biosynthesis of very long-chain PUFA up to C34, compounds of key structural roles in neural tissues such as eye and brain, which had high levels of elovl4b transcripts. Surprisingly, while the relative expression of fads2, required for the production of DHA from EPA, was increased in liver of ABT fed a diet with reduced levels of EPA and DHA, expression of elovl4b was reduced. Results indicated that ABT has enzymes necessary for endogenous production of DHA from EPA and demonstrate that Elovl4b can effectively compensate for absence of Elovl2.


Assuntos
Clonagem Molecular , Gorduras na Dieta/farmacologia , Elongases de Ácidos Graxos , Proteínas de Peixes , Regulação da Expressão Gênica/efeitos dos fármacos , Atum , Animais , Elongases de Ácidos Graxos/biossíntese , Elongases de Ácidos Graxos/genética , Proteínas de Peixes/biossíntese , Proteínas de Peixes/genética , Atum/genética , Atum/metabolismo
16.
Philos Trans R Soc Lond B Biol Sci ; 375(1804): 20190654, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32536307

RESUMO

Omega-3 (ω3 or n-3) long-chain polyunsaturated fatty acids (PUFA), including eicosapentaenoic acid and docosahexaenoic acid (DHA), play physiologically important roles in vertebrates. These compounds have long been believed to have originated almost exclusively from aquatic (mostly marine) single-cell organisms. Yet, a recent study has discovered that many invertebrates possess a type of enzymes called methyl-end desaturases (ωx) that enables them to endogenously produce n-3 long-chain PUFA and could make a significant contribution to production of these compounds in the marine environment. Polychaetes are major components of benthic fauna and thus important to maintain a robust food web as a recycler of organic matter and a prey item for higher trophic level species like fish. In the present study, we investigated the ωx enzymes from the common ragworm, Hediste diversicolor, a common inhabitant in sedimentary littoral ecosystems of the North Atlantic. Functional assays of the H. diversicolorωx demonstrated unique desaturation capacities. An ω3 desaturase mediated the conversion of n-6 fatty acid substrates into their corresponding n-3 products including DHA. A further enzyme possessed unique regioselectivities combining both ω6 and ω3 desaturase activities. These results illustrate that the long-chain PUFA biosynthetic enzymatic machinery of aquatic invertebrates such as polychaetes is highly diverse and clarify that invertebrates can be major contributors to fatty acid trophic upgrading in aquatic food webs. This article is part of the theme issue 'The next horizons for lipids as 'trophic biomarkers': evidence and significance of consumer modification of dietary fatty acids'.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Cadeia Alimentar , Poliquetos/metabolismo , Animais
17.
Artigo em Inglês | MEDLINE | ID: mdl-32325254

RESUMO

Long-chain (C20-24) polyunsaturated fatty acids (LC-PUFA) are physiologically important nutrients for vertebrates including fish. Previous studies have addressed the metabolism of LC-PUFA in the Amazonian teleost tambaqui (Colossoma macropomum), an emerging species in Brazilian aquaculture, showing that all the desaturase and elongase activities required to convert C18 polyunsaturated fatty acids (PUFA) into LC-PUFA are present in tambaqui. Yet, elongation of very long-chain fatty acid 4 (Elovl4) proteins, which participate in the biosynthesis of very long-chain (>C24) saturated fatty acids (VLC-SFA) and very long-chain polyunsaturated fatty acids (VLC-PUFA), had not been characterized in this species. Here, we investigate the repertoire and function of two Elovl4 in tambaqui. Furthermore, we present the first draft genome assembly from tambaqui, and demonstrated the usefulness of this resource in nutritional physiology studies by isolating one of the tambaqui elovl4 genes. Our results showed that, similarly to other teleost species, two elovl4 gene paralogs termed as elovl4a and elovl4b, are present in tambaqui. Tambaqui elovl4a and elovl4b have open reading frames (ORF) of 948 and 912 base pairs, encoding putative proteins of 315 and 303 amino acids, respectively. Functional characterization in yeast showed that both Elovl4 enzymes have activity toward all the PUFA substrates assayed (18:3n-3, 18:2n-6, 18:4n-3, 18:3n-6, 20:5n-3, 20:4n-6, 22:5n-3, 22:4n-6 and 22:6n-3), producing elongated products of up to C36. Moreover, both Elovl4 were able to elongate 22:5n-3 to 24:5n-3, a key elongation step required for the synthesis of docosahexaenoic acid via the Sprecher pathway.


Assuntos
Elongases de Ácidos Graxos/genética , Ácidos Graxos Insaturados/metabolismo , Proteínas de Peixes/genética , Peixes/metabolismo , Sequência de Aminoácidos , Animais , Brasil , Clonagem Molecular , Ácidos Docosa-Hexaenoicos/biossíntese , Elongases de Ácidos Graxos/isolamento & purificação , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/genética , Proteínas de Peixes/metabolismo , Genoma , Fases de Leitura Aberta , Filogenia , Alinhamento de Sequência
18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(8): 1134-1144, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31048041

RESUMO

The interest in understanding the capacity of aquatic invertebrates to biosynthesise omega-3 (ω3) long-chain (≥C20) polyunsaturated fatty acids (LC-PUFA) has increased in recent years. Using the common octopus Octopus vulgaris as a model species, we previously characterised a ∆5 desaturase and two elongases (i.e. Elovl2/5 and Elovl4) involved in the biosynthesis of LC-PUFA in molluscs. The aim of this study was to characterise both molecularly and functionally, two methyl-end (or ωx) desaturases that have been long regarded to be absent in most animals. O. vulgaris possess two ωx desaturase genes encoding enzymes with ∆12 and ω3 regioselectivities enabling the de novo biosynthesis of the C18 PUFA 18:2ω6 (LA, linoleic acid) and 18:3ω3 (ALA, α-linolenic acid), generally regarded as dietary essential for animals. The O. vulgaris ∆12 desaturase ("ωx2") mediates the conversion of 18:1ω9 (oleic acid) into LA, and subsequently, the ω3 desaturase ("ωx1") catalyses the ∆15 desaturation from LA to ALA. Additionally, the O. vulgaris ω3 desaturase has ∆17 capacity towards a variety of C20 ω6 PUFA that are converted to their ω3 PUFA products. Particularly relevant was the affinity of the ω3 desaturase towards 20:4ω6 (ARA, arachidonic acid) to produce 20:5ω3 (EPA, eicosapentaenoic acid), as supported by yeast heterologous expression, and enzymatic activity exhibited in vivo when paralarvae were incubated in the presence of [1-14C]20:4ω6. These results confirmed that several routes enabling EPA biosynthesis are operative in O. vulgaris whereas ARA and docosahexaenoic acid (DHA, 22:6ω3) should be considered essential fatty acids since endogenous production appears to be limited.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/biossíntese , Octopodiformes/metabolismo , Animais , Ácido Araquidônico/biossíntese , Ácido Araquidônico/metabolismo , Ácidos Docosa-Hexaenoicos/biossíntese , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/biossíntese , Ácidos Graxos Dessaturases/genética , Ácido Linoleico/biossíntese , Octopodiformes/enzimologia , Ácido alfa-Linolênico/biossíntese
19.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(11): 1644-1655, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31421180

RESUMO

Homeoviscous adaptation in poikilotherms is based in the regulation of the level of desaturation of fatty acids, variation in phospholipids head groups and sterol content in the membrane lipids, in order to maintain the membrane fluidity in response to changes in environmental temperature. Increased proportion of unsaturated fatty acids is thought to be the main response to low-temperature acclimation, which is mostly achieved by fatty acid desaturases. Genome analysis of the ciliate Tetrahymena thermophila and a gene knockout approach has allowed us to identify one Δ12 FAD and to study its activity in the original host and in a yeast heterologous expression system. The "PUFA index" -relative content of polyunsaturated fatty acids compared to the sum of saturated and monounsaturated fatty acid content- was ~57% lower at 15 °C and 35 °C in the Δ12 FAD gene knockout strain (KOΔ12) compared to WT strain. We characterized the role of T. thermophila Δ12 FAD on homeoviscous adaptation and analyzed its involvement in cellular growth, cold stress response, and membrane fluidity, as well as its expression pattern during temperature shifts. Although these alterations allowed normal growth in the KOΔ12 strain at 30 °C or higher temperatures, growth was impaired at temperatures of 20 °C or lower, where homeoviscous adaptation is impaired. These results stress the importance of Δ12 FAD in the regulation of cold adaptation processes, as well as the suitability of T. thermophila as a valuable model to investigate the regulation of membrane lipids and evolutionary conservation and divergence of the underlying mechanisms.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Tetrahymena thermophila/enzimologia , Temperatura Baixa , Resposta ao Choque Frio , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Insaturados/metabolismo , Técnicas de Silenciamento de Genes , Fosfolipídeos/metabolismo , Tetrahymena thermophila/genética , Tetrahymena thermophila/fisiologia , Triterpenos/metabolismo
20.
Lancet Infect Dis ; 19(5): e149-e161, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30799251

RESUMO

In the past 5-10 years, Venezuela has faced a severe economic crisis, precipitated by political instability and declining oil revenue. Public health provision has been affected particularly. In this Review, we assess the impact of Venezuela's health-care crisis on vector-borne diseases, and the spillover into neighbouring countries. Between 2000 and 2015, Venezuela witnessed a 359% increase in malaria cases, followed by a 71% increase in 2017 (411 586 cases) compared with 2016 (240 613). Neighbouring countries, such as Brazil, have reported an escalating trend of imported malaria cases from Venezuela, from 1538 in 2014 to 3129 in 2017. In Venezuela, active Chagas disease transmission has been reported, with seroprevalence in children (<10 years), estimated to be as high as 12·5% in one community tested (n=64). Dengue incidence increased by more than four times between 1990 and 2016. The estimated incidence of chikungunya during its epidemic peak is 6975 cases per 100 000 people and that of Zika virus is 2057 cases per 100 000 people. The re-emergence of many vector-borne diseases represents a public health crisis in Venezuela and has the possibility of severely undermining regional disease elimination efforts. National, regional, and global authorities must take action to address these worsening epidemics and prevent their expansion beyond Venezuelan borders.


Assuntos
Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/transmissão , Epidemias , Doenças Transmitidas por Vetores/epidemiologia , Doenças Transmitidas por Vetores/transmissão , Animais , Controle de Doenças Transmissíveis , Doenças Transmissíveis Emergentes/prevenção & controle , Epidemias/prevenção & controle , Epidemias/estatística & dados numéricos , Geografia Médica , Humanos , Incidência , Doenças Transmitidas por Vetores/prevenção & controle , Venezuela/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA