Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Cell ; 81(15): 3128-3144.e7, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34216544

RESUMO

Mutations in BRCA1 or BRCA2 (BRCA) is synthetic lethal with poly(ADP-ribose) polymerase inhibitors (PARPi). Lethality is thought to derive from DNA double-stranded breaks (DSBs) necessitating BRCA function in homologous recombination (HR) and/or fork protection (FP). Here, we report instead that toxicity derives from replication gaps. BRCA1- or FANCJ-deficient cells, with common repair defects but distinct PARPi responses, reveal gaps as a distinguishing factor. We further uncouple HR, FP, and fork speed from PARPi response. Instead, gaps characterize BRCA-deficient cells, are diminished upon resistance, restored upon resensitization, and, when exposed, augment PARPi toxicity. Unchallenged BRCA1-deficient cells have elevated poly(ADP-ribose) and chromatin-associated PARP1, but aberrantly low XRCC1 consistent with defects in backup Okazaki fragment processing (OFP). 53BP1 loss resuscitates OFP by restoring XRCC1-LIG3 that suppresses the sensitivity of BRCA1-deficient cells to drugs targeting OFP or generating gaps. We highlight gaps as a determinant of PARPi toxicity changing the paradigm for synthetic lethal interactions.


Assuntos
Proteína BRCA1/genética , Replicação do DNA/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Linhagem Celular , Cisplatino/farmacologia , DNA/genética , DNA/metabolismo , DNA de Cadeia Simples/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Recombinação Homóloga/efeitos dos fármacos , Humanos , Camundongos Endogâmicos NOD , RNA Helicases/genética , Rad51 Recombinase/genética , Proteína de Replicação A/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
3.
Nucleic Acids Res ; 48(16): 9161-9180, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32797166

RESUMO

FANCJ, a DNA helicase and interacting partner of the tumor suppressor BRCA1, is crucial for the repair of DNA interstrand crosslinks (ICL), a highly toxic lesion that leads to chromosomal instability and perturbs normal transcription. In diploid cells, FANCJ is believed to operate in homologous recombination (HR) repair of DNA double-strand breaks (DSB); however, its precise role and molecular mechanism is poorly understood. Moreover, compensatory mechanisms of ICL resistance when FANCJ is deficient have not been explored. In this work, we conducted a siRNA screen to identify genes of the DNA damage response/DNA repair regime that when acutely depleted sensitize FANCJ CRISPR knockout cells to a low concentration of the DNA cross-linking agent mitomycin C (MMC). One of the top hits from the screen was RAP80, a protein that recruits repair machinery to broken DNA ends and regulates DNA end-processing. Concomitant loss of FANCJ and RAP80 not only accentuates DNA damage levels in human cells but also adversely affects the cell cycle checkpoint, resulting in profound chromosomal instability. Genetic complementation experiments demonstrated that both FANCJ's catalytic activity and interaction with BRCA1 are important for ICL resistance when RAP80 is deficient. The elevated RPA and RAD51 foci in cells co-deficient of FANCJ and RAP80 exposed to MMC are attributed to single-stranded DNA created by Mre11 and CtIP nucleases. Altogether, our cell-based findings together with biochemical studies suggest a critical function of FANCJ to suppress incompletely processed and toxic joint DNA molecules during repair of ICL-induced DNA damage.


Assuntos
Proteína BRCA1/genética , Proteínas de Ligação a DNA/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Instabilidade Genômica/genética , Chaperonas de Histonas/genética , RNA Helicases/genética , Rad51 Recombinase/genética , Instabilidade Cromossômica/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/deficiência , Técnicas de Inativação de Genes , Células HeLa , Chaperonas de Histonas/deficiência , Humanos , Mitomicina/farmacologia , Reparo de DNA por Recombinação/genética
4.
Mol Reprod Dev ; 81(4): 326-40, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24415223

RESUMO

Adhesiveness of the endometrial epithelium to an embryo plays a critical role in the initiation of pregnancy. Loss or gain of adhesiveness also dictates the potential of endometrial epithelial cells to metastasize, an event that can result from certain genetic insults. A proteomics-based exploration of the "adhesiveness" these epithelial cells was employed that could identify targets that could disrupt embryo-endometrium interactions and/or metastasis of endometrial cancer cells. The present study defined the surfactomes of two human endometrial epithelial cell lines known for their differential adhesiveness to embryonic cells. Comparative, two-dimensional electrophoretic analysis of the surfactomes of RL95-2 (exhibiting higher adhesiveness to the embryonic cell line JAr) and HEC-1A (exhibiting reduced adhesiveness to JAr cells) revealed 55 differentially enriched proteins. Of these, 10 proteins were identified by MALDI-TOF/TOF or LC-MS/MS. TUBB2C, ADAMTS3, and elongation factor beta were more abundant on the HEC-1A cell surface whereas HSP27, HSPA9, GP96, CRT, Tapasin-ERP57, PDI, and ß-actin were more abundant on the RL95-2 cell surface. Nano LC-MS/MS was also employed to generate a more comprehensive surfactomes of RL95-2 and HEC-1A. The study also demonstrated a pro-adhesive role of CRT and HSPA9 and an anti-adhesive role of TUBB2C populations found on the cell surface. In brief, this study identifies the cell-surface protein complements of two human endometrial epithelial cell lines, and reveals the role of three proteins in heterotypic cell adhesion.


Assuntos
Implantação do Embrião/fisiologia , Endométrio/citologia , Células Epiteliais/citologia , Proteínas de Membrana/análise , Trofoblastos/citologia , Adesão Celular/fisiologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Coriocarcinoma/patologia , Cromatografia Líquida/métodos , Eletroforese em Gel Bidimensional , Feminino , Proteínas de Choque Térmico/análise , Proteínas de Choque Térmico/fisiologia , Humanos , Masculino , Proteínas de Membrana/fisiologia , Nanotecnologia , Neoplasias da Próstata/patologia , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Esferoides Celulares , Propriedades de Superfície , Neoplasias Uterinas/patologia
5.
Expert Opin Ther Targets ; 25(1): 27-36, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33416413

RESUMO

Introduction: Translesion synthesis (TLS) is a DNA damage tolerance (DDT) mechanism that employs error-prone polymerases to bypass replication blocking DNA lesions, contributing to a gain in mutagenesis and chemo-resistance. However, recent findings illustrate an emerging role for TLS in replication gap suppression (RGS), distinct from its role in post-replication gap filling. Here, TLS protects cells from replication stress (RS)-induced toxic single-stranded DNA (ssDNA) gaps that accumulate in the wake of active replication. Intriguingly, TLS-mediated RGS is specifically observed in several cancer cell lines and contributes to their survival. Thus, targeting TLS has the potential to uniquely eradicate tumors without harming non-cancer tissues. Areas Covered: This review provides an innovative perspective on the role of TLS beyond its canonical function of lesion bypass or post-replicative gap filling. We provide a comprehensive analysis that underscores the emerging role of TLS as a cancer adaptation necessary to overcome the replication stress response (RSR), an anti-cancer barrier. Expert Opinion: TLS RGS is critical for tumorigenesis and is a new hallmark of cancer. Although the exact mechanism and extent of TLS dependency in cancer is still emerging, TLS inhibitors have shown promise as an anti-cancer therapy in selectively targeting this unique cancer vulnerability.


Assuntos
Dano ao DNA/genética , Terapia de Alvo Molecular , Neoplasias/terapia , Animais , Replicação do DNA/genética , DNA de Cadeia Simples/genética , Humanos , Neoplasias/genética , Neoplasias/patologia
6.
Cancer Res ; 81(5): 1388-1397, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184108

RESUMO

Defects in DNA repair and the protection of stalled DNA replication forks are thought to underlie the chemosensitivity of tumors deficient in the hereditary breast cancer genes BRCA1 and BRCA2 (BRCA). Challenging this assumption are recent findings that indicate chemotherapies, such as cisplatin used to treat BRCA-deficient tumors, do not initially cause DNA double-strand breaks (DSB). Here, we show that ssDNA replication gaps underlie the hypersensitivity of BRCA-deficient cancer and that defects in homologous recombination (HR) or fork protection (FP) do not. In BRCA-deficient cells, ssDNA gaps developed because replication was not effectively restrained in response to stress. Gap suppression by either restoration of fork restraint or gap filling conferred therapy resistance in tissue culture and BRCA patient tumors. In contrast, restored FP and HR could be uncoupled from therapy resistance when gaps were present. Moreover, DSBs were not detected after therapy when apoptosis was inhibited, supporting a framework in which DSBs are not directly induced by genotoxic agents, but rather are induced from cell death nucleases and are not fundamental to the mechanism of action of genotoxic agents. Together, these data indicate that ssDNA replication gaps underlie the BRCA cancer phenotype, "BRCAness," and we propose they are fundamental to the mechanism of action of genotoxic chemotherapies. SIGNIFICANCE: This study suggests that ssDNA replication gaps are fundamental to the toxicity of genotoxic agents and underlie the BRCA-cancer phenotype "BRCAness," yielding promising biomarkers, targets, and opportunities to resensitize refractory disease.See related commentary by Canman, p. 1214.


Assuntos
Proteína BRCA2 , Replicação do DNA , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Genes BRCA2 , Recombinação Homóloga , Humanos
7.
Sci Adv ; 6(24): eaaz7808, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32577513

RESUMO

The replication stress response, which serves as an anticancer barrier, is activated not only by DNA damage and replication obstacles but also oncogenes, thus obscuring how cancer evolves. Here, we identify that oncogene expression, similar to other replication stress-inducing agents, induces single-stranded DNA (ssDNA) gaps that reduce cell fitness. DNA fiber analysis and electron microscopy reveal that activation of translesion synthesis (TLS) polymerases restricts replication fork slowing, reversal, and fork degradation without inducing replication gaps despite the continuation of replication during stress. Consistent with gap suppression (GS) being fundamental to cancer, we demonstrate that a small-molecule inhibitor targeting the TLS factor REV1 not only disrupts DNA replication and cancer cell fitness but also synergizes with gap-inducing therapies such as inhibitors of ATR or Wee1. Our work illuminates that GS during replication is critical for cancer cell fitness and therefore a targetable vulnerability.

8.
Cell Rep ; 24(12): 3251-3261, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30232006

RESUMO

The DNA helicase FANCJ is mutated in hereditary breast and ovarian cancer and Fanconi anemia (FA). Nevertheless, how loss of FANCJ translates to disease pathogenesis remains unclear. We addressed this question by analyzing proteins associated with replication forks in cells with or without FANCJ. We demonstrate that FANCJ-knockout (FANCJ-KO) cells have alterations in the replisome that are consistent with enhanced replication stress, including an aberrant accumulation of the fork remodeling factor helicase-like transcription factor (HLTF). Correspondingly, HLTF contributes to fork degradation in FANCJ-KO cells. Unexpectedly, the unrestrained DNA synthesis that characterizes HLTF-deficient cells is FANCJ dependent and correlates with S1 nuclease sensitivity and fork degradation. These results suggest that FANCJ and HLTF promote replication fork integrity, in part by counteracting each other to keep fork remodeling and elongation in check. Indicating one protein compensates for loss of the other, loss of both HLTF and FANCJ causes a more severe replication stress response.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , RNA Helicases/metabolismo , Fatores de Transcrição/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Células HCT116 , Células HEK293 , Humanos , RNA Helicases/genética , Fatores de Transcrição/genética
9.
Cancer Biol Ther ; 17(4): 439-48, 2016 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-27003515

RESUMO

Telomerase activation is one of the key mechanisms that allow cells to bypass replicative senescence. Telomerase activity is primarily regulated at the level of transcription of its catalytic unit- hTERT. Prostate cancer (PCa), akin to other cancers, is characterized by high telomerase activity. Existing data suggest that hTERT expression and telomerase activity are positively regulated by androgenic stimuli in androgen-dependent prostate cancer (ADPC) cells. A part of the present study reaffirmed this by demonstrating a decline in the hTERT expression and telomerase activity on "loss of AR" in ADPC cells. The study further addressed 2 unresolved queries, i) whether AR-mediated signaling is of any relevance to hTERT expression in castration-resistant prostate cancer (CRPC) and ii) whether this signaling involves EGR1. Our data suggest that AR-mediated signaling negatively regulates hTERT expression in CRPC cells. Incidental support for the possibility of EGR1 being a regulator of hTERT expression in PCa was provided by i) immunolocalization of hTERT and EGR1 proteins in the same cell type (secretory epithelium) of PCa and BPH tissues; ii) significantly (p< 0.001) higher levels of both these proteins in CRPC (PC3 and DU145), compared with ADPC (LNCaP) cells. A direct evidence for the role of EGR1 in hTERT expression was evident by a significant (p<0.0001) decrease in the hTERT transcript levels in the EGR1-silenced CRPC cells. Further, "gain of AR" led to a significant reduction in the levels of hTERT and EGR1 in CRPC cells. However, restoration of EGR1 levels prevented the decline in the hTERT transcript levels in these cells. Taken together, our data indicate that AR regulates the expression of EGR1, which in turn acts as a positive regulator of hTERT expression in CRPC cells. Thus, AR exerts an inhibitory effect on hTERT expression and telomerase activity by modulating EGR1 levels in CRPC cells.


Assuntos
Anticorpos Monoclonais/metabolismo , Neoplasias da Próstata/genética , Receptores Androgênicos/metabolismo , Telomerase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais
10.
Chem Biol Drug Des ; 82(2): 178-88, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23601330

RESUMO

Follicle-stimulating hormone is important for mammalian reproduction. It acts through specific receptors located on the plasma membrane of granulosa cells in ovaries and Sertoli cells in testes. The binding of follicle-stimulating hormone to its receptor activates intracytoplasmic signaling pathways leading to steroidogenesis. These steroids in turn regulate the follicle-stimulating hormone action from the anterior pituitary through exerting negative feedback effect. In addition to steroids, non-steroidal factors secreted by the ovaries are believed to modulate follicle-stimulating hormone action through autocrine/paracrine mode. One such low molecular weight peptide referred to as follicle-stimulating hormone receptor-binding inhibitor-8 purified from human follicular fluid has been extensively studied. Follicle-stimulating hormone receptor-binding inhibitor-8 has been shown to inhibit binding of follicle-stimulating hormone to its receptor. The present article describes the effect of follicle-stimulating hormone receptor-binding inhibitor-8 on follicle-stimulating hormone-induced signaling in rat granulosa cells. Follicle-stimulating hormone receptor-binding inhibitor-8 inhibited the follicle-stimulating hormone-induced cAMP, and the effect was observed to be mediated through the protein kinase A. Further, an inhibitory effect of follicle-stimulating hormone receptor-binding inhibitor-8 on the granulosa cell proliferation was evaluated using COV434 cell line which is derived from the human granulosa cell tumor. The effect of the peptide on the cell cycle analysis showed an increase in apoptotic population and the arrest of G1 phase. These findings suggest that follicle-stimulating hormone receptor-binding inhibitor-8 acts as a follicle-stimulating hormone antagonist and affects the follicle-stimulating hormone-mediated signaling and proliferation in the granulosa cells.


Assuntos
Proteínas de Transporte/farmacologia , Proliferação de Células/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Receptores do FSH/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , AMP Cíclico/metabolismo , Feminino , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Humanos , Ratos , Receptores do FSH/análise , Receptores do FSH/metabolismo
11.
PLoS One ; 8(3): e58419, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555582

RESUMO

BACKGROUND: Endometrium acquires structural and functional competence for embryo implantation only during the receptive phase of menstrual cycle in fertile women. Sizeable data are available to indicate that this ability is acquired by modulation in the expression of several genes/gene products. However, there exists little consensus on the identity, number of expressed/not-detected genes and their pattern of expression (up or down regulation). METHODS: Literature search was carried out to retrieve the data on endometrial expression of genes/proteins in various conditions. Data were compiled to generate a comprehensive database, Human Gene Expression Endometrial Receptivity database (HGEx-ERdb). The database was used to identify the Receptivity Associated Genes (RAGs) which display the similar pattern of expression across different investigations. Transcript levels of select RAGs encoding cell adhesion proteins were compared between two human endometrial epithelial cell lines; RL95-2 and HEC-1-A by quantitative real time polymerase chain reaction (q-RT-PCR). Further select RAGs were investigated for their expression in pre-receptive (n = 4) and receptive phase (n = 4) human endometrial tissues by immunohistochemical studies. JAr spheroid attachment assays were carried out to assess the functional significance of two RAGs. RESULTS: HGEx-ERdb (http://resource.ibab.ac.in/HGEx-ERdb/) helped identification of 179 RAGs, of which 151 genes were consistently expressed and upregulated and 28 consistently not-detected and downregulated in receptive phase as compared to pre-receptive phase. q-RT-PCR confirmed significantly higher (p<0.005) expression of Thrombospondin1 (THBS1), CD36 and Mucin 16 transcripts, in RL95-2 as compared to HEC-1-A. Further, the pretreatment with antibodies against CD36 and COMP led to a reduction in the percentage of JAr spheroids attached to RL95-2. Immunohistochemical studies demonstrated significantly higher (p<0.05) expression of endometrial THBS1, Cartilage Oligomeric Matrix Protein (COMP) and CD36 in the receptive phase as compared to pre-receptive phase human endometrial tissues. CONCLUSION: HGEx-ERdb is a catalogue of 19,285 genes, reported for their expression in human endometrium. Further 179 genes were identified as the RAGs. Expression analysis of some RAGs validated the utility of approach employed in creation of HGEx-ERdb. Studies aimed towards defining the specific functions of RAGs and their potential networks may yield relevant information about the major 'nodes' which regulate endometrial receptivity.


Assuntos
Bases de Dados de Ácidos Nucleicos , Endométrio/metabolismo , Regulação da Expressão Gênica/fisiologia , Genômica , Ciclo Menstrual/fisiologia , Adulto , Linhagem Celular , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA