RESUMO
Temporal lobe epilepsy is the most drug-resistant type with the highest incidence among the other focal epilepsies. Metabolic manipulations are of great interest among others, glycolysis inhibitors like 2-deoxy D-glucose (2-DG) being the most promising intervention. Here, we sought to investigate the effects of 2-DG treatment on cellular and circuit level electrophysiological properties using patch-clamp and local field potentials recordings and behavioral alterations such as depression and anxiety behaviors, and changes in nitric oxide signaling in the intrahippocampal kainic acid model. We found that epileptic animals were less anxious, more depressed, with more locomotion activity. Interestingly, by masking the effect of increased locomotor activity on the parameters of the zero-maze test, no altered anxiety behavior was noted in epileptic animals. However, 2-DG could partially reverse the behavioral changes induced by kainic acid. The findings also showed that 2-DG treatment partially suppresses cellular level alterations while failing to reverse circuit-level changes resulting from kainic acid injection. Analysis of NADPH-diaphorase positive neurons in the CA1 area of the hippocampus revealed that the number of positive neurons was significantly reduced in dorsal CA1 of the epileptic animals and 2-DG treatment did not affect the diminishing effect of kainic acid on NADPH-d+ neurons in the CA1 area. In the control group receiving 2-DG, however, an augmented NADPH-d+ cell number was noted. These data suggest that 2-DG cannot suppress epileptiform activity at the circuit-level in this model of epilepsy and therefore, may fail to control the seizures in temporal lobe epilepsy cases.
Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/prevenção & controle , Ácido Caínico/toxicidade , NADPH Desidrogenase/metabolismo , NADPH Desidrogenase/farmacologia , Glucose/metabolismo , NADP/metabolismo , Hipocampo/metabolismo , Epilepsia/metabolismo , Neurônios/metabolismo , Desoxiglucose/farmacologia , Desoxiglucose/uso terapêutico , Glicólise , Modelos Animais de DoençasRESUMO
OBJECTIVES: Coma state and loss of consciousness are associated with impaired brain activity, particularly gamma oscillations, that integrate functional connectivity in neural networks, including the default mode network (DMN). Mechanical ventilation (MV) in comatose patients can aggravate brain activity, which has decreased in coma, presumably because of diminished nasal airflow. Nasal airflow, known to drive functional neural oscillations, synchronizing distant brain networks activity, is eliminated by tracheal intubation and MV. Hence, we proposed that rhythmic nasal air puffing in mechanically ventilated comatose patients may promote brain activity and improve network connectivity. MATERIALS AND METHODS: We recorded electroencephalography (EEG) from 15 comatose patients (seven women) admitted to the intensive care unit because of opium poisoning and assessed the activity, complexity, and connectivity of the DMN before and during the nasal air-puff stimulation. Nasal cavity air puffing was done through a nasal cannula controlled by an electrical valve (open duration of 630 ms) with a frequency of 0.2 Hz (ie, 12 puff/min). RESULTS: Our analyses demonstrated that nasal air puffing enhanced the power of gamma oscillations (30-100 Hz) in the DMN. In addition, we found that the coherence and synchrony between DMN regions were increased during nasal air puffing. Recurrence quantification and fractal dimension analyses revealed that EEG global complexity and irregularity, typically seen in wakefulness and conscious state, increased during rhythmic nasal air puffing. CONCLUSIONS: Rhythmic nasal air puffing, as a noninvasive brain stimulation method, opens a new window to modifying the brain connectivity integration in comatose patients. This approach may potentially influence comatose patients' outcomes by increasing brain reactivity and network connectivity.
Assuntos
Coma , Respiração Artificial , Humanos , Feminino , Coma/diagnóstico por imagem , Coma/terapia , Rede de Modo Padrão , Encéfalo/fisiologia , Eletroencefalografia , Imageamento por Ressonância Magnética , Mapeamento Encefálico , Vias NeuraisRESUMO
Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) source coupled to the Q Exactive Plus has been extensively used in untargeted mass spectrometry imaging (MSI) analyses of biological tissue sections. Although the Orbitrap is a high-resolution and accurate-mass (HRAM) mass analyzer, these attributes alone cannot be used for the reliable identification of unknown analytes observed in complex biological matrices. Spectral accuracy (SA) is the ability of the mass spectrometer to accurately measure the isotopic distributions which, when used with high mass measurement accuracy (MMA), can facilitate the elucidation of a single elemental composition. To investigate the effects of different ion populations on an Orbitrap's SA and MMA, a solution of caffeine, the tetrapeptide MRFA, and ultramark was analyzed using a Q Exactive Plus across eight distinct automatic gain control (AGC) targets. The same compounds from the same lot numbers were also individually analyzed using isotope ratio mass spectrometry (IRMS) to accurately determine the isotopic abundance of 13C, 15N, and 34S. We demonstrated that at optimum absolute ion abundances the Orbitrap can be used to accurately count carbons, nitrogens, and sulfurs in samples with varying masses. Additionally, absolute monoisotopic ion abundances required for high SA were empirically determined by using the expected (IRMS) and experimental (Orbitrap) isotopic distributions to calculate the Pearson chi-square test. These thresholds for absolute ion abundances can be used in untargeted MSI studies to shorten an identification list by rapidly screening for isotopic distributions whose absolute ion abundances are high enough to accurately estimate the number of atoms.
Assuntos
Cafeína/análise , Oligopeptídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Isótopos de Enxofre/análiseRESUMO
A quantitative mass spectrometry imaging (QMSI) method for absolute quantification of glutathione (GSH) in healthy and cancerous hen ovarian tissues using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is presented. Using this technique, the ion abundance of GSH was normalized to that of a structural analogue, which was sprayed on the slide prior to mounting the tissue sections. This normalization strategy significantly improved the voxel-to-voxel variability; the variability is attributed to the overall ionization process. Subsequently, a series of calibration spots of stable isotope-labeled (SIL) GSH were pipetted on top of the tissue to construct a spatial calibration curve, and calculate the concentration of GSH in both tissue sections. The QMSI results were verified by LC-MS/MS quantification of GSH for the same tissues. GSH was extracted from tissue sections in a slightly acidic buffer and was then alkylated using N-ethylmaleimide to minimize autoxidation of GSH to glutathione disulfide. The alkylated GSH was separated from other contaminants using reversed phase liquid chromatography (RPLC) coupled to a triple quadrupole mass spectrometer, and the z-ion transition of NEM-GSH was used to quantify GSH in each tissue section. While the absolute values obtained using IR-MALDESI QMSI and LC-MS/MS were different, a â¼2-fold increase in the concentration of GSH in cancer tissue compared to the healthy tissue was observed using both techniques. Possible reasons for the difference between absolute concentration values obtained using IR-MALDESI QMSI and LC-MS/MS are also discussed.
Assuntos
Glutationa/análise , Neoplasias Ovarianas/diagnóstico por imagem , Ovário/diagnóstico por imagem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Galinhas , Cromatografia Líquida , Feminino , Espectrometria de Massas em TandemRESUMO
Laser systems are widely used in mass spectrometry as sample probes and ionization sources. Mid-infrared lasers are particularly suitable for analysis of high water content samples such as animal and plant tissues, using water as a resonantly excited sacrificial matrix. Commercially available mid-IR lasers have historically been bulky and expensive due to cooling requirements. This work presents a novel air-cooled miniature mid-IR laser with adjustable burst-mode output and details an evaluation of its performance for mass spectrometry imaging. The miniature laser was found capable of generating sufficient energy for complete ablation of animal tissue in the context of an IR-MALDESI experiment with exogenously added ice matrix, yielding several hundred confident metabolite identifications. Graphical abstract The use of a novel miniature 2.94 µm burst-mode laser in IR-MALDESI allows for rapid and sensitive mass spectrometry imaging of a whole mouse.
Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Animais , Desenho de Equipamento , Raios Infravermelhos , Lasers , Camundongos , Miniaturização/instrumentação , Imagem Óptica/instrumentação , Imagem Corporal Total/instrumentaçãoRESUMO
Terpenes are the largest class of natural products with a wide range of applications including use as pharmaceuticals, fragrances, flavorings, and agricultural products. Terpenes are biosynthesized by the condensation of a variable number of isoprene units resulting in linear polyisoprene diphosphate units, which can then be cyclized by terpene synthases into a range of complex structures. While these cyclic structures have immense diversity and potential in different applications, their direct analysis in biological buffer systems requires intensive sample preparation steps such as salt cleanup, extraction with organic solvents, and chromatographic separations. Electrospray post-ionization can be used to circumvent many sample cleanup and desalting steps. SESI and IR-MALDESI are two examples of ionization methods that employ electrospray post-ionization at atmospheric pressure and temperature. By coupling the two techniques and doping the electrospray solvent with silver ions, olefinic terpenes of different classes and varying degrees of volatility were directly analyzed from a biological buffer system with no sample workup steps.
Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Terpenos/análise , Alcenos/análise , Soluções Tampão , Raios Infravermelhos , Íons/análise , Sesquiterpenos Monocíclicos , Sesquiterpenos/análise , Espectrometria de Massas por Ionização por Electrospray/métodosRESUMO
RATIONALE: High-throughput screening (HTS) is a critical step in the drug discovery process. However, most mass spectrometry (MS)-based HTS methods require sample cleanup steps prior to analysis. In this work we present the utility of infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) for monitoring an enzymatic reaction directly from a biological buffer system with no sample cleanup and at high throughput. METHODS: IR-MALDESI was used to directly analyze reaction mixtures from a well plate at different time points after reaction initiation. The percent conversion of precursors to products was used to screen the enzyme activity. The reaction was performed with two different concentrations of precursors and enzyme in order to assess the dynamic range of the assay. Eventually, a pseudo-HTS study was designed to investigate the utility of IR-MALDESI screening enzyme activity in a high-throughput manner. RESULTS: IR-MALDESI was able to readily monitor the activity of IDH1 over time at two different concentrations of precursors and enzyme. The calculated Z-factors of 0.65 and 0.41 confirmed the suitability of the developed method for screening enzyme activity in HTS manner. Finally, in a single-blind pseudo-HTS analysis IR-MALDESI was able to correctly predict the identity of all samples, where 8/10 samples were identified with high confidence and the other two samples with lower confidence. CONCLUSIONS: The enzymatic activity of IDH1 was screened by directly analyzing the reaction content from the buffer in well plates with no sample cleanup steps. This proof-of-concept study demonstrates the robustness of IR-MALDESI for direct analysis of enzymatic reactions from biological buffers with no sample cleanup and its immense potential for HTS applications.
Assuntos
Descoberta de Drogas/métodos , Ensaios Enzimáticos/métodos , Ensaios de Triagem em Larga Escala/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Isocitrato Desidrogenase/metabolismo , Isocitratos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Modelos Químicos , NADP/metabolismoRESUMO
Mass spectrometry imaging (MSI) is a rapidly evolving field for monitoring the spatial distribution and abundance of analytes in biological tissue sections. It allows for direct and simultaneous analysis of hundreds of different compounds in a label-free manner. In order to obtain a comprehensive metabolite and lipid data, a polarity switching MSI method using infrared matrix assisted laser desorption electrospray ionization (IR-MALDESI) was developed and optimized where the electrospray polarity was alternated from one voxel to the next. Healthy and cancerous ovarian hen tissue sections were analyzed using this method. Distribution and relative abundance of different metabolites and lipids within each tissue section were discerned, and differences between the two were revealed. Additionally, the utility of using mass spectrometry concepts such as spectral accuracy and sulfur counting for confident identification of analytes in an untargeted method are discussed.
Assuntos
Galinhas , Raios Infravermelhos , Imagem Molecular/métodos , Neoplasias Ovarianas/patologia , Ovário/citologia , Ovário/patologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Feminino , Neoplasias Ovarianas/diagnóstico por imagem , Ovário/diagnóstico por imagem , Solventes/químicaRESUMO
Laser desorption followed by post electrospray ionization requires synchronized timing of the key events (sample desorption/ionization, mass spectrometry analysis, and sample translation) necessary to conduct mass spectrometry imaging (MSI) with adequate analyte sensitivity. In infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) MSI analyses, two laser pulses are used for analysis at each volumetric element, or voxel, of a biological sample and ion accumulation in the C-trap exceeding 100 ms is necessary to capture all sample-associated ions using an infrared laser with a 20 Hz repetition rate. When coupled to an Orbitrap-based mass spectrometer like the Q Exactive Plus, this time window for ion accumulation exceeds dynamically controlled trapping of samples with comparable ion flux by Automatic Gain Control (AGC), which cannot be used during MSI analysis. In this work, a next-generation IR-MALDESI source has been designed and constructed that incorporates a mid-infrared OPO laser capable of operating at 100 Hz and allows requisite C-trap inject time during MSI to be reduced to 30 ms. Analyte detectability of the next-generation IR-MALDESI integrated source has been evaluated as a function of laser repetition rate (100-20 Hz) with corresponding C-trap ion accumulation times (30-110 ms) in both untargeted and targeted analysis of biological samples. Reducing the C-trap ion accumulation time resulted in increased ion abundance by up to 3 orders of magnitude for analytes ranging from xenobiotics to endogenous lipids, and facilitated the reduction of voxel-to-voxel variability by more than 3-fold.
Assuntos
Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Xenobióticos/análise , Íons/química , Lasers , Espectrofotometria Infravermelho , Fatores de TempoRESUMO
Mass spectrometry imaging (MSI) allows for the direct and simultaneous analysis of the spatial distribution of molecular species from sample surfaces such as tissue sections. One of the goals of MSI is monitoring the distribution of compounds at the cellular resolution in order to gain insights about the biology that occurs at this spatial level. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) imaging of cervical tissue sections was performed using a spot-to-spot distance of 10 µm by utilizing the method of oversampling, where the target plate is moved by a distance that is less than the desorption radius of the laser. In addition to high spatial resolution, high mass accuracy (±1 ppm) and high mass resolving power (140,000 at m/z = 200) were achieved by coupling the IR-MALDESI imaging source to a hybrid quadrupole Orbitrap mass spectrometer. Ion maps of cholesterol in tissues were generated from voxels containing <1 cell, on average. Additionally, the challenges of imaging at the cellular level in terms of loss of sensitivity and longer analysis time are discussed.
Assuntos
Células/química , Colo do Útero/química , Células/metabolismo , Colo do Útero/metabolismo , Colesterol/metabolismo , Feminino , Humanos , Microtomia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodosRESUMO
This study aimed to investigate the effects of intranasal air-puffing on cognitive impairments and brain cortical activity following one night of partial sleep deprivation (PSD) in adults. A total of 26 healthy adults underwent the numerical Stroop test (NST) and electroencephalography (EEG) before and after one night of PSD. Following PSD, subjects in the treatment group (n = 13) received nasal air-puffs (5 Hz, 3 min) before beginning the NST and EEG recording. Administration of nasal air-puffs in the treatment group restored the PSD-induced increase in error rate and decrease in reaction time and missing rate in the NST. Intranasal air-puffs recovered the PSD-induced augmentation of delta and theta power and the reduction of beta and gamma power in the EEG, particularly in the frontal lobes. Intranasal air-puffing also almost reversed the PSD-induced decrease in EEG signal complexity. Furthermore, it had a restorative effect on PSD-induced alteration in intra-default mode network functional connectivity in the beta and gamma frequency bands. Rhythmic nasal air-puffing can mitigate acute PSD-induced impairments in cognitive functions. It exerts part of its ameliorating effect by restoring neuronal activity in cortical brain areas involved in cognitive processing.
RESUMO
Theta burst stimulation (TBS), an FDA-cleared treatment for depression, is hypothesized to modulate excitability in the prefrontal cortex, though this has not definitively been shown in vivo. We performed calcium imaging on glutamatergic neurons in awake rodents to understand the effects of theta burst stimulation at a cellular level. Our findings provide the first direct evidence that TBS bidirectionally modulates glutamatergic activity when delivered in vivo and directly links calcium activity changes during stimulation with post-stimulation plasticity.
RESUMO
Infertility is such an important issue in society today. In some cases of male infertility, the main cause is oxidative stress and the presence of reactive oxygen species in the environment or in sperm cells. All current techniques that measure oxidative stress, including the nitroblue tetrazolium Test, DNA Fragmentation Index, Malondialdehyde, and Endz Test are qualitative and semi-quantitative. These methods do not have good sensitivity and specificity. Semen samples from 50 infertile patients and 10 normal individuals were collected. The samples were examined for laboratory routine tests according to the WHO 2010 protocol. Oxidative stress tests, including DFI, NBT, and MDA, were performed for these two groups. Bioluminescence inhibition assay was performed for detection of O2.- in semen samples by aequorin. The normal individuals showed significantly better semen parameters than the patient's group. Significantly lower O2.- levels were seen in the patient's group compared to normal individuals. The cut-off value of O2.- levels in normal individuals was determined to be 8 × 105 RLU/s with a sensitivity of 100% and a specificity of 100%. Infertile patients, despite having reduced quality of semen parameters, have high O2.- levels, and this causes the intensity of bioluminescence to be quenched in these people.
Assuntos
Infertilidade Masculina , Superóxidos , Humanos , Masculino , Superóxidos/metabolismo , Sêmen , Fragmentação do DNA , Motilidade dos Espermatozoides , Estresse Oxidativo/fisiologia , Infertilidade Masculina/diagnóstico , Espermatozoides/metabolismoRESUMO
Navigational decision-making tasks, such as spatial working memory (SWM), rely highly on information integration from several cortical and sub-cortical regions. Performance in SWM tasks is associated with theta rhythm, including low-frequency oscillations related to movement and memory. The interaction of the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC), reflected in theta synchrony, is essential in various steps of information processing during SWM. We used a closed-loop neurofeedback (CLNF) system to upregulate theta power in the mPFC and investigate its effects on circuit dynamics and behavior in animal models. Specifically, we hypothesized that enhancing the power of the theta rhythm in the mPFC might improve SWM performance. Animals were divided into three groups: closed-loop (CL), random-loop (RL), and OFF (without stimulation). We recorded local field potential (LFP) in the mPFC while electrical reward stimulation contingent on cortical theta activity was delivered to the lateral hypothalamus (LH), which is considered one of the central reward-associated regions. We also recorded LFP in the vHPC to evaluate the related subcortical neural changes. Results revealed a sustained increase in the theta power in both mPFC and vHPC for the CL group. Our analysis also revealed an increase in mPFC-vHPC synchronization in the theta range over the stimulation sessions in the CL group, as measured by coherence and cross-correlation in the theta frequency band. The reinforcement of this circuit improved spatial decision-making performance in the subsequent behavioral results. Our findings provide direct evidence of the relationship between specific theta upregulation and SWM performance and suggest that theta oscillations are integral to cognitive processes. Overall, this study highlights the potential of adaptive CLNF systems in investigating neural dynamics in various brain circuits.
Assuntos
Tomada de Decisões , Neurorretroalimentação , Córtex Pré-Frontal , Ritmo Teta , Ritmo Teta/fisiologia , Animais , Masculino , Tomada de Decisões/fisiologia , Córtex Pré-Frontal/fisiologia , Neurorretroalimentação/métodos , Neurorretroalimentação/fisiologia , Ratos , Hipocampo/fisiologia , Memória de Curto Prazo/fisiologia , Navegação Espacial/fisiologia , RecompensaRESUMO
BACKGROUND: Deep brain stimulation (DBS) has demonstrated potential in mitigating Alzheimer's disease (AD). However, the invasive nature of DBS presents challenges for its application. The olfactory bulb (OB), showing early AD-related changes and extensive connections with memory regions, offers an attractive entry point for intervention, potentially restoring normal activity in deteriorating memory circuits. AIMS: Our study examined the impact of electrically stimulating the OB on working memory as well as pathological and electrophysiological alterations in the OB, medial prefrontal cortex, hippocampus, and entorhinal cortex in amyloid beta (Aß) AD model rats. METHODS: Male Wistar rats underwent surgery for electrode implantation in brain regions, inducing Alzheimer's-like disease. Bilateral olfactory bulb (OB) electrical stimulation was performed for 1 hour daily to the OB of stimulation group animals for 18 consecutive days, followed by the evaluations of histological, behavioral, and local field potential signal processing. RESULTS: OB stimulation counteracted Aß plaque accumulation and prevented AD-induced working memory impairments. Furthermore, it prompted an increase in power across diverse frequency bands and enhanced functional connectivity, particularly in the gamma band, within the investigated regions during a working memory task. CONCLUSION: This preclinical investigation highlights the potential of olfactory pathway-based brain stimulation to modulate the activity of deep-seated memory networks for AD treatment. Importantly, the accessibility of this pathway via the nasal cavity lays the groundwork for the development of minimally invasive approaches targeting the olfactory pathway for brain modulation.
Assuntos
Doença de Alzheimer , Estimulação Encefálica Profunda , Bulbo Olfatório , Ratos Wistar , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/patologia , Masculino , Estimulação Encefálica Profunda/métodos , Ratos , Modelos Animais de Doenças , Progressão da Doença , Peptídeos beta-Amiloides/metabolismo , Memória de Curto Prazo/fisiologiaRESUMO
AIMS: In this study, the anticonvulsant action of closed-loop, low-frequency deep brain stimulation (DBS) was investigated. In addition, the changes in brain rhythms and functional connectivity of the hippocampus and prefrontal cortex were evaluated. METHODS: Epilepsy was induced by pilocarpine in male Wistar rats. After the chronic phase, a tripolar electrode was implanted in the right ventral hippocampus and a monopolar electrode in medial prefrontal cortex (mPFC). Subjects' spontaneous seizure behaviors were observed in continuous video recording, while the local field potentials (LFPs) were recorded simultaneously. In addition, spatial memory was evaluated by the Barnes maze test. RESULTS: Applying hippocampal DBS, immediately after seizure detection in epileptic animals, reduced their seizure severity and duration, and improved their performance in Barnes maze test. DBS reduced the increment in power of delta, theta, and gamma waves in pre-ictal, ictal, and post-ictal periods. Meanwhile, DBS increased the post-ictal-to-pre-ictal ratio of theta band. DBS decreased delta and increased theta coherences, and also increased the post-ictal-to-pre-ictal ratio of coherence. In addition, DBS increased the hippocampal-mPFC coupling in pre-ictal period and decreased the coupling in the ictal and post-ictal periods. CONCLUSION: Applying closed-loop, low-frequency DBS at seizure onset reduced seizure severity and improved memory. In addition, the changes in power, coherence, and coupling of the LFP oscillations in the hippocampus and mPFC demonstrate low-frequency DBS efficacy as an antiepileptic treatment, returning LFPs to a seemingly non-seizure state in subjects that received DBS.
Assuntos
Epilepsia , Pilocarpina , Humanos , Masculino , Ratos , Animais , Pilocarpina/toxicidade , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/terapia , Anticonvulsivantes , Hipocampo , Aprendizagem em LabirintoRESUMO
Background: Optical coherence tomography (OCT) imaging significantly contributes to ophthalmology in the diagnosis of retinal disorders such as age-related macular degeneration and diabetic macular edema. Both diseases involve the abnormal accumulation of fluids, location, and volume, which is vitally informative in detecting the severity of the diseases. Automated and accurate fluid segmentation in OCT images could potentially improve the current clinical diagnosis. This becomes more important by considering the limitations of manual fluid segmentation as a time-consuming and subjective to error method. Methods: Deep learning techniques have been applied to various image processing tasks, and their performance has already been explored in the segmentation of fluids in OCTs. This article suggests a novel automated deep learning method utilizing the U-Net structure as the basis. The modifications consist of the application of transformers in the encoder path of the U-Net with the purpose of more concentrated feature extraction. Furthermore, a custom loss function is empirically tailored to efficiently incorporate proper loss functions to deal with the imbalance and noisy images. A weighted combination of Dice loss, focal Tversky loss, and weighted binary cross-entropy is employed. Results: Different metrics are calculated. The results show high accuracy (Dice coefficient of 95.52) and robustness of the proposed method in comparison to different methods after adding extra noise to the images (Dice coefficient of 92.79). Conclusions: The segmentation of fluid regions in retinal OCT images is critical because it assists clinicians in diagnosing macular edema and executing therapeutic operations more quickly. This study suggests a deep learning framework and novel loss function for automated fluid segmentation of retinal OCT images with excellent accuracy and rapid convergence result.
RESUMO
The retina is a thin, light-sensitive membrane with a multilayered structure found in the back of the eyeball. There are many types of retinal disorders. The two most prevalent retinal illnesses are Age-Related Macular Degeneration (AMD) and Diabetic Macular Edema (DME). Optical Coherence Tomography (OCT) is a vital retinal imaging technology. X-lets (such as curvelet, DTCWT, contourlet, etc.) have several benefits in image processing and analysis. They can capture both local and non-local features of an image simultaneously. The aim of this paper is to propose an optimal deep learning architecture based on sparse basis functions for the automated segmentation of cystic areas in OCT images. Different X-let transforms were used to produce different network inputs, including curvelet, Dual-Tree Complex Wavelet Transform (DTCWT), circlet, and contourlet. Additionally, three different combinations of these transforms are suggested to achieve more accurate segmentation results. Various metrics, including Dice coefficient, sensitivity, false positive ratio, Jaccard index, and qualitative results, were evaluated to find the optimal networks and combinations of the X-let's sub-bands. The proposed network was tested on both original and noisy datasets. The results show the following facts: (1) contourlet achieves the optimal results between different combinations; (2) the five-channel decomposition using high-pass sub-bands of contourlet transform achieves the best performance; and (3) the five-channel decomposition using high-pass sub-bands formations out-performs the state-of-the-art methods, especially in the noisy dataset. The proposed method has the potential to improve the accuracy and speed of the segmentation process in clinical settings, facilitating the diagnosis and treatment of retinal diseases.
RESUMO
Optogenetics has revolutionised neuroscience research, but at the same time has brought a plethora of new variables to consider when designing an experiment with AAV-based targeted gene delivery. Some concerns have been raised regarding the impact of AAV injection volume and expression time in relation to longitudinal experimental designs. In this study, we investigated the efficiency of optically evoked post-synaptic responses in connection to two variables: the volume of the injected virus and the expression time of the virus. For this purpose, we expressed the blue-shifted ChR2, oChIEF, employing a widely used AAV vector delivery strategy. We found that the volume of the injected virus has a minimal impact on the efficiency of optically-evoked postsynaptic population responses. The expression time, on the other hand, has a pronounced effect, with a gradual reduction in the population responses beyond 4 weeks of expression. We strongly advise to monitor time-dependent expression profiles when planning or conducting long-term experiments that depend on successful and stable channelrhodopsin expression.
Assuntos
Terapia Genética , Vetores Genéticos , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Optogenética , Dependovirus/metabolismoRESUMO
BACKGROUND AND OBJECTIVES: Default mode network (DMN) is a principal network that is more active at the baseline functional state of consciousness and spontaneous brain activity. Nasal breathing beyond the oxygen supply, entrained brain oscillations in widespread brain regions. Consistent with the important role of nasal breathing on neural oscillation for brain function, here we aimed to evaluate respiration entrained DMN rhythms. MATERIALS AND METHODS: Using electroencephalography (EEG), we assessed the power spectral density and connectivity in DMN during the resting state among a group of sixteen healthy during three successive sessions. In addition to DMN, synchrony of the signal over the widespread cortical regions including somatosensory areas was investigated. Signal acquisition sessions consist of three times including nasal breathing, oral breathing, and nasal air-puff state that odorless air was puffed using a nasal cannula via an electrical valve (open duration of 630 ms) with a frequency of 0.2 Hz while subjects spontaneously breath orally. RESULTS: Our analyses demonstrated that nasal airflow, during both nasal breathing and nasal air-puff states, enhanced the power and connectivity of DMN regions specially at higher frequency bands, particularly gamma ranges. Enhancement in brain areas activity and connectivity including DMN and somatosensory due to the nasal airflow were not affected even in the condition that subjects were not attending to the nasal air-puff. CONCLUSIONS: Nasal airflow promotes brain oscillations, particularly at the range of gamma that is very essential for higher brain functions.