RESUMO
Multicellular rosettes are transient epithelial structures that serve as important cellular intermediates in the formation of diverse organs. Using the zebrafish posterior lateral line primordium (pLLP) as a model system, we investigated the role of the RhoA GEF Mcf2lb in rosette morphogenesis. The pLLP is a group of â¼150 cells that migrates along the zebrafish trunk and is organized into epithelial rosettes; these are deposited along the trunk and will differentiate into sensory organs called neuromasts (NMs). Using single-cell RNA-sequencing and whole-mount in situ hybridization, we showed that mcf2lb is expressed in the pLLP during migration. Live imaging and subsequent 3D analysis of mcf2lb mutant pLLP cells showed disrupted apical constriction and subsequent rosette organization. This resulted in an excess number of deposited NMs along the trunk of the zebrafish. Cell polarity markers ZO-1 and Par-3 were apically localized, indicating that pLLP cells are properly polarized. In contrast, RhoA activity, as well as signaling components downstream of RhoA, Rock2a and non-muscle Myosin II, were diminished apically. Thus, Mcf2lb-dependent RhoA activation maintains the integrity of epithelial rosettes.
Assuntos
Sistema da Linha Lateral , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Transdução de Sinais/fisiologia , Movimento Celular/genética , Morfogênese/fisiologiaRESUMO
Peripheral sensory neurons are a critical part of the nervous system that transmit a multitude of sensory stimuli to the central nervous system. During larval and juvenile stages in zebrafish, this function is mediated by Rohon-Beard somatosensory neurons (RBs). RBs are optically accessible and amenable to experimental manipulation, making them a powerful system for mechanistic investigation of sensory neurons. Previous studies provided evidence that RBs fall into multiple subclasses; however, the number and molecular makeup of these potential RB subtypes have not been well defined. Using a single-cell RNA sequencing (scRNA-seq) approach, we demonstrate that larval RBs in zebrafish fall into three, largely nonoverlapping classes of neurons. We also show that RBs are molecularly distinct from trigeminal neurons in zebrafish. Cross-species transcriptional analysis indicates that one RB subclass is similar to a mammalian group of A-fiber sensory neurons. Another RB subclass is predicted to sense multiple modalities, including mechanical stimulation and chemical irritants. We leveraged our scRNA-seq data to determine that the fibroblast growth factor (Fgf) pathway is active in RBs. Pharmacological and genetic inhibition of this pathway led to defects in axon maintenance and RB cell death. Moreover, this can be phenocopied by treatment with dovitinib, an FDA-approved Fgf inhibitor with a common side effect of peripheral neuropathy. Importantly, dovitinib-mediated axon loss can be suppressed by loss of Sarm1, a positive regulator of neuronal cell death and axonal injury. This offers a molecular target for future clinical intervention to fight neurotoxic effects of this drug.
Assuntos
Células Receptoras Sensoriais , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Animais Geneticamente Modificados , Sobrevivência Celular , Células Receptoras Sensoriais/fisiologia , Axônios/fisiologia , Análise de Célula Única , MamíferosRESUMO
Peripheral somatosensory neurons innervate the skin and sense the environment. Whereas many studies focus on initial axon outgrowth and pathfinding, how signaling pathways contribute to maintenance of the established axon arbors and terminals within the skin is largely unknown. This question is particularly relevant to the many types of neuropathies that affect mature neuronal arbors. We show that a receptor tyrosine kinase (RTK), c-Kit, contributes to maintenance, but not initial development, of cutaneous axons in the larval zebrafish before sex determination. Downregulation of Kit signaling rapidly induced retraction of established axon terminals in the skin and a reduction in axonal density. Conversely, misexpression of c-Kit ligand in the skin in larval zebrafish induced increases in local sensory axon density, suggesting an important role for Kit signaling in cutaneous axon maintenance. We found Src family kinases (SFKs) act directly downstream to mediate Kit's role in regulating cutaneous axon density. Our data demonstrate a requirement for skin-to-axon signaling to maintain axonal networks and elucidate novel roles for Kit and SFK signaling in this context. This Kit-SFK signaling axis offers a potential pathway to therapeutically target in sensory neuropathies and to further explore in other neurobiological processes.SIGNIFICANCE STATEMENTThe skin is full of small nerve endings that sense different environmental stimuli. How these nerve endings grow and reach a specific area of the skin during development has been the focus of many studies. In contrast, the cellular and molecular mechanisms required to maintain the function and health of these structures is relatively unknown. We discovered that a specific receptor in sensory neurons, c-Kit, is required to maintain the density of nerve endings in the skin. Furthermore, we found that a molecular target of c-Kit, Src family kinases (SFKs), is necessary for this role. Thus, c-Kit/SFK signaling regulates density and maintenance of sensory nerve endings in the skin and may have important roles in neural disease and regeneration.
RESUMO
Collective cell migration is a process where cohorts of cells exhibit coordinated migratory behavior. During individual and collective cellular migration, cells must extend protrusions to interact with the extracellular environment, sense chemotactic cues, and act as points of attachment. The mechanisms and regulators of protrusive behavior have been widely studied in individually migrating cells; however, how this behavior is regulated throughout collectives is not well understood. To address this, we used the zebrafish posterior lateral line primordium (pLLP) as a model. The pLLP is a cluster of ~150 âcells that migrates along the zebrafish trunk, depositing groups of cells that will become sensory organs. To define protrusive behavior, we performed mosaic analysis to sparsely label pLLP cells with a transgene marking filamentous actin. This approach revealed an abundance of brush-like protrusions throughout the pLLP that orient in the direction of migration. Formation of these protrusions depends on the Arp2/3 complex, a regulator of dendritic actin. This argues that these brush-like protrusions are an in vivo example of lamellipodia. Mosaic analysis demonstrated that these lamellipodia-like protrusions are located in a close proximity to the overlying skin. Immunostaining revealed an abundance of focal adhesion complexes surrounding the pLLP. Disruption of these complexes specifically in pLLP cells led to impaired pLLP migration. Finally, we show that Erk signaling, a known regulator of focal adhesions, is required for proper formation of lamellipodia-like protrusions and pLLP migration. Altogether, our results suggest a model where the coordinated dynamics of lamellipodia-like protrusions, making contact with either the overlying skin or the extracellular matrix through focal adhesions, promotes migration of pLLP cells.
Assuntos
Movimento Celular , Adesões Focais/fisiologia , Pseudópodes/fisiologia , Peixe-Zebra/embriologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/análise , Animais , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Pseudópodes/enzimologia , Pseudópodes/metabolismo , Peixe-Zebra/fisiologiaRESUMO
Multipotent progenitor populations are necessary for generating diverse tissue types during embryogenesis. We show the RNA polymerase-associated factor 1 complex (Paf1C) is required to maintain multipotent progenitors of the neural crest (NC) lineage in zebrafish. Mutations affecting each Paf1C component result in near-identical NC phenotypes; alyron mutant embryos carrying a null mutation in paf1 were analyzed in detail. In the absence of zygotic paf1 function, definitive premigratory NC progenitors arise but fail to maintain expression of the sox10 specification gene. The mutant NC progenitors migrate aberrantly and fail to differentiate appropriately. Blood and germ cell progenitor development is affected similarly. Development of mutant NC could be rescued by additional loss of positive transcription elongation factor b (P-TEFb) activity, a key factor in promoting transcription elongation. Consistent with the interpretation that inhibiting/delaying expression of some genes is essential for maintaining progenitors, mutant embryos lacking the CDK9 kinase component of P-TEFb exhibit a surfeit of NC progenitors and their derivatives. We propose Paf1C and P-TEFb act antagonistically to regulate the timing of the expression of genes needed for NC development.
Assuntos
Linhagem da Célula/genética , Células-Tronco Multipotentes/fisiologia , Crista Neural/citologia , Células-Tronco Neurais/fisiologia , Proteínas Nucleares/fisiologia , Fator B de Elongação Transcricional Positiva/fisiologia , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Diferenciação Celular/genética , Quinase 9 Dependente de Ciclina/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Multipotentes/citologia , Complexos Multiproteicos/genética , Complexos Multiproteicos/fisiologia , Crista Neural/fisiologia , Células-Tronco Neurais/citologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Fator B de Elongação Transcricional Positiva/antagonistas & inibidores , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genéticaRESUMO
Coordinated transcriptional and epigenetic mechanisms that direct development of the later differentiating second heart field (SHF) progenitors remain largely unknown. Here, we show that a novel zebrafish histone deacetylase 1 (hdac1) mutant allele cardiac really gone (crg) has a deficit of ventricular cardiomyocytes (VCs) and smooth muscle within the outflow tract (OFT) due to both cell and non-cell autonomous loss in SHF progenitor proliferation. Cyp26-deficient embryos, which have increased retinoic acid (RA) levels, have similar defects in SHF-derived OFT development. We found that nkx2.5+ progenitors from Hdac1 and Cyp26-deficient embryos have ectopic expression of ripply3, a transcriptional co-repressor of T-box transcription factors that is normally restricted to the posterior pharyngeal endoderm. Furthermore, the ripply3 expression domain is expanded anteriorly into the posterior nkx2.5+ progenitor domain in crg mutants. Importantly, excess ripply3 is sufficient to repress VC development, while genetic depletion of Ripply3 and Tbx1 in crg mutants can partially restore VC number. We find that the epigenetic signature at RA response elements (RAREs) that can associate with Hdac1 and RA receptors (RARs) becomes indicative of transcriptional activation in crg mutants. Our study highlights that transcriptional repression via the epigenetic regulator Hdac1 facilitates OFT development through directly preventing expression of the RA-responsive gene ripply3 within SHF progenitors.
Assuntos
Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Função Ventricular/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Coração/fisiologia , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/fisiologia , Organogênese , Proteínas Repressoras/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Tretinoína/metabolismo , Função Ventricular/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismoRESUMO
Oligodendrocytes in the central nervous system produce myelin, a lipid-rich, multilamellar sheath that surrounds axons and promotes the rapid propagation of action potentials. A critical component of myelin is myelin basic protein (MBP), expression of which requires anterograde mRNA transport followed by local translation at the developing myelin sheath. Although the anterograde motor kinesin KIF1B is involved in mbp mRNA transport in zebrafish, it is not entirely clear how mbp transport is regulated. From a forward genetic screen for myelination defects in zebrafish, we identified a mutation in actr10, which encodes the Arp11 subunit of dynactin, a critical activator of the retrograde motor dynein. Both the actr10 mutation and pharmacological dynein inhibition in zebrafish result in failure to properly distribute mbp mRNA in oligodendrocytes, indicating a paradoxical role for the retrograde dynein/dynactin complex in anterograde mbp mRNA transport. To address the molecular mechanism underlying this observation, we biochemically isolated reporter-tagged Mbp mRNA granules from primary cultured mammalian oligodendrocytes to show that they indeed associate with the retrograde motor complex. Next, we used live-cell imaging to show that acute pharmacological dynein inhibition quickly arrests Mbp mRNA transport in both directions. Chronic pharmacological dynein inhibition also abrogates Mbp mRNA distribution and dramatically decreases MBP protein levels. Thus, these cell culture and whole animal studies demonstrate a role for the retrograde dynein/dynactin motor complex in anterograde mbp mRNA transport and myelination in vivo.
Assuntos
Complexo Dinactina/metabolismo , Dineínas/metabolismo , Proteína Básica da Mielina/genética , Oligodendroglia/metabolismo , RNA Mensageiro/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/patologia , Transporte Biológico , Proliferação de Células/genética , Células Cultivadas , Complexo Dinactina/genética , Dineínas/genética , Larva , Proteínas dos Microfilamentos/genética , Oligodendroglia/patologia , Ratos Sprague-Dawley , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
UNLABELLED: Delivery of proteins and organelles to the growth cone during axon extension relies on anterograde transport by kinesin motors. Though critical for neural circuit development, the mechanisms of cargo-specific anterograde transport during axon extension are only starting to be explored. Cargos of particular importance for axon outgrowth are microtubule modifiers, such as SCG10 (Stathmin-2). SCG10 is expressed solely during axon extension, localized to growth cones, and essential for axon outgrowth; however, the mechanisms of SCG10 transport and activity were still debated. Using zebrafish mutants and in vivo imaging, we identified the Kif1B motor and its interactor Kif1 binding protein (KBP) as critical for SCG10 transport to axon growth cones and complete axon extension. Axon truncation in kbp(st23) mutants can be suppressed by SCG10 overexpression, confirming the direct relationship between decreased SCG10 levels and failed axon outgrowth. Live imaging revealed that the reduced levels of SCG10 in kbp(st23) mutant growth cones led to altered microtubule stability, defining the mechanistic basis of axon truncation. Thus, our data reveal a novel role for the Kif1B-KBP complex in the anterograde transport of SCG10, which is necessary for proper microtubule dynamics and subsequent axon extension. SIGNIFICANCE STATEMENT: Together, our data define the mechanistic underpinnings of failed axon outgrowth with loss of KBP or its associated motor, Kif1B. In addition, we provide conclusive evidence that this defect results from disruption of anterograde transport of SCG10. This is one of the first examples of a motor to be implicated in the essential transport of a discreet cargo necessary for axon extension. In addition, counter to previous in vitro and cell culture results, neither loss of the Kif1B motor nor KBP resulted in inhibition of mitochondrial transport. Altogether, our work links transport of SCG10 to the regulation of microtubule dynamics in the axon growth cone and enhances our understanding of this process during axon outgrowth.
Assuntos
Axônios/fisiologia , Cones de Crescimento/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/genética , Cinesinas/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Transporte Proteico/genética , RNA Mensageiro/metabolismo , Estatmina/genética , Estatmina/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genéticaRESUMO
Multicellular rosettes have recently been appreciated as important cellular intermediates that are observed during the formation of diverse organ systems. These rosettes are polarized, transient epithelial structures that sometimes recapitulate the form of the adult organ. Rosette formation has been studied in various developmental contexts, such as in the zebrafish lateral line primordium, the vertebrate pancreas, the Drosophila epithelium and retina, as well as in the adult neural stem cell niche. These studies have revealed that the cytoskeletal rearrangements responsible for rosette formation appear to be conserved. By contrast, the extracellular cues that trigger these rearrangements in vivo are less well understood and are more diverse. Here, we review recent studies of the genetic regulation and cellular transitions involved in rosette formation. We discuss and compare specific models for rosette formation and highlight outstanding questions in the field.
Assuntos
Padronização Corporal/fisiologia , Adesão Celular/fisiologia , Células Epiteliais/fisiologia , Modelos Biológicos , Morfogênese/fisiologia , Animais , Citoesqueleto/fisiologia , Drosophila melanogaster , Humanos , Túbulos Renais/embriologia , Sistema da Linha Lateral/embriologia , Tubo Neural/embriologia , Pâncreas/embriologia , Células Fotorreceptoras de Invertebrados/fisiologia , Xenopus laevis , Peixe-ZebraRESUMO
Canonical Wnt signaling plays crucial roles during development and disease. How Wnt signaling is modulated in different in vivo contexts is currently not well understood. Here, we investigate the modulation of Wnt signaling in the posterior lateral line primordium (pLLP), a cohort of ~100 cells that collectively migrate along the trunk of the zebrafish embryo. The pLLP comprises proliferative progenitor cells and organized epithelial cells that will form the mechanosensory organs of the posterior lateral line. Wnt signaling is active in the leading progenitor zone of the pLLP and restricted from the trailing zone through expression of the secreted Wnt inhibitors dkk1b and dkk2. We have identified a zebrafish strain, krm1(nl10), which carries a mutation in the kremen1 gene, a non-obligate co-receptor for the Dkk family of proteins. Previous studies have shown that Kremen1 inhibits Wnt signaling by facilitating internalization of the Kremen1-Dkk-Lrp5/6 complex. Surprisingly, we found that disruption of Kremen1 in the pLLP exhibited molecular and cellular phenotypes associated with a decrease rather than overactivation of Wnt signaling. Transplantation of wild-type cells into the mutant primordia failed to rescue the krm1(nl10) phenotype, thus revealing that the effects of Kremen1 loss are non-cell-autonomous. Finally, ectopic expression of Dkk1b-mTangerine protein revealed larger spread of the fusion protein in the mutant primordia compared with the wild type. Based on our data, we propose a novel mechanism in which Kremen1 modulates Wnt activity by restricting the range of secreted Dkk proteins during collective cell migration in the pLLP.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Sistema da Linha Lateral/embriologia , Proteínas de Membrana/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Movimento Celular , Proliferação de Células , Clonagem Molecular , Células Epiteliais/citologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Mutação , Fenótipo , Transdução de Sinais , Células-Tronco/citologia , Proteínas Wnt/metabolismo , Proteínas de Peixe-Zebra/genéticaRESUMO
Retrograde axonal transport requires an intricate interaction between the dynein motor and its cargo. What mediates this interaction is largely unknown. Using forward genetics and a novel in vivo imaging approach, we identified JNK-interacting protein 3 (Jip3) as a direct mediator of dynein-based retrograde transport of activated (phosphorylated) c-Jun N-terminal Kinase (JNK) and lysosomes. Zebrafish jip3 mutants (jip3(nl7) ) displayed large axon terminal swellings that contained high levels of activated JNK and lysosomes, but not other retrograde cargos such as late endosomes and autophagosomes. Using in vivo analysis of axonal transport, we demonstrated that the terminal accumulations of activated JNK and lysosomes were due to a decreased frequency of retrograde movement of these cargos in jip3(nl7) , whereas anterograde transport was largely unaffected. Through rescue experiments with Jip3 engineered to lack the JNK binding domain and exogenous expression of constitutively active JNK, we further showed that loss of Jip3-JNK interaction underlies deficits in pJNK retrograde transport, which subsequently caused axon terminal swellings but not lysosome accumulation. Lysosome accumulation, rather, resulted from loss of lysosome association with dynein light intermediate chain (dynein accessory protein) in jip3(nl7) , as demonstrated by our co-transport analyses. Thus, our results demonstrate that Jip3 is necessary for the retrograde transport of two distinct cargos, active JNK and lysosomes. Furthermore, our data provide strong evidence that Jip3 in fact serves as an adapter protein linking these cargos to dynein.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transporte Axonal/genética , Dineínas/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Dineínas/genética , Endossomos/genética , Endossomos/metabolismo , Regulação da Expressão Gênica , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lisossomos/genética , Lisossomos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Peixe-Zebra/genética , Peixe-Zebra/metabolismoRESUMO
Many morphogenetic movements during development require the formation of transient intermediates called rosettes. Within rosettes, cells are polarized with apical ends constricted towards the rosette center and nuclei basally displaced. Whereas the polarity and cytoskeletal machinery establishing these structures has been extensively studied, the extracellular cues and intracellular signaling cascades that promote their formation are not well understood. We examined how extracellular Fibroblast growth factor (Fgf) signals regulate rosette formation in the zebrafish posterior lateral line primordium (pLLp), a group of â¼100 cells that migrates along the trunk during embryonic development to form the lateral line mechanosensory system. During migration, the pLLp deposits rosettes from the trailing edge, while cells are polarized and incorporated into nascent rosettes in the leading region. Fgf signaling was previously shown to be crucial for rosette formation in the pLLp. We demonstrate that activation of Fgf receptor (Fgfr) induces intracellular Ras-MAPK, which is required for apical constriction and rosette formation in the pLLp. Inhibiting Fgfr-Ras-MAPK leads to loss of apically localized Rho-associated kinase (Rock) 2a, which results in failed actomyosin cytoskeleton activation. Using mosaic analyses, we show that a cell-autonomous Ras-MAPK signal is required for apical constriction and Rock2a localization. We propose a model whereby activated Fgfr signals through Ras-MAPK to induce apical localization of Rock2a in a cell-autonomous manner, activating the actomyosin network to promote apical constriction and rosette formation in the pLLp. This mechanism presents a novel cellular strategy for driving cell shape changes.
Assuntos
Polaridade Celular/fisiologia , Forma Celular/fisiologia , Sistema da Linha Lateral/embriologia , Morfogênese/fisiologia , Transdução de Sinais/fisiologia , Peixe-Zebra/embriologia , Análise de Variância , Animais , Movimento Celular/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Hibridização In Situ , Sistema da Linha Lateral/citologia , Sistema da Linha Lateral/metabolismo , Microscopia de Fluorescência , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas ras/metabolismoRESUMO
Forward genetic screens in zebrafish have identified >9000 mutants, many of which are potential disease models. Most mutants remain molecularly uncharacterized because of the high cost, time and labor investment required for positional cloning. These costs limit the benefit of previous genetic screens and discourage future screens. Drastic improvements in DNA sequencing technology could dramatically improve the efficiency of positional cloning in zebrafish and other model organisms, but the best strategy for cloning by sequencing has yet to be established. Using four zebrafish inner ear mutants, we developed and compared two approaches for 'cloning by sequencing': one based on bulk segregant linkage (BSFseq) and one based on homozygosity mapping (HMFseq). Using BSFseq we discovered that mutations in lmx1b and jagged1b cause abnormal ear morphogenesis. With HMFseq we validated that the disruption of cdh23 abolishes the ear's sensory functions and identified a candidate lesion in lhfpl5a predicted to cause nonsyndromic deafness. The success of HMFseq shows that the high intrastrain polymorphism rate in zebrafish eliminates the need for time-consuming map crosses. Additionally, we analyzed diversity in zebrafish laboratory strains to find areas of elevated diversity and areas of fixed homozygosity, reinforcing recent findings that genome diversity is clustered. We present a database of >15 million sequence variants that provides much of this approach's power. In our four test cases, only a single candidate single nucleotide polymorphism (SNP) remained after subtracting all database SNPs from a mutant's critical region. The saturation of the common SNP database and our open source analysis pipeline MegaMapper will improve the pace at which the zebrafish community makes unique discoveries relevant to human health.
Assuntos
Caderinas/genética , Clonagem Molecular , Mutação , Análise de Sequência de DNA/métodos , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Sequência de Bases , Proteínas de Ligação ao Cálcio/genética , Mapeamento Cromossômico , Surdez/genética , Orelha Interna/anormalidades , Ligação Genética , Genoma , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genéticaRESUMO
Pax gene haploinsufficiency causes a variety of congenital defects. Renal-coloboma syndrome, resulting from mutations in Pax2, is characterized by kidney hypoplasia, optic nerve malformation, and hearing loss. Although this underscores the importance of Pax gene dosage in normal development, how differential levels of these transcriptional regulators affect cell differentiation and tissue morphogenesis is still poorly understood. We show that differential levels of zebrafish Pax2a and Pax8 modulate commitment and behavior in cells that eventually contribute to the otic vesicle and epibranchial placodes. Initially, a subset of epibranchial placode precursors lie lateral to otic precursors within a single Pax2a/8-positive domain; these cells subsequently move to segregate into distinct placodes. Using lineage-tracing and ablation analyses, we show that cells in the Pax2a/8+ domain become biased towards certain fates at the beginning of somitogenesis. Experiments involving either Pax2a overexpression or partial, combinatorial Pax2a and Pax8 loss of function reveal that high levels of Pax favor otic differentiation whereas low levels increase cell numbers in epibranchial ganglia. In addition, the Fgf and Wnt signaling pathways control Pax2a expression: Fgf is necessary to induce Pax2a, whereas Wnt instructs the high levels of Pax2a that favor otic differentiation. Our studies reveal the importance of Pax levels during sensory placode formation and provide a mechanism by which these levels are controlled.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fator de Transcrição PAX2/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Cruzamentos Genéticos , Orelha Interna/embriologia , Orelha Interna/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Modelos Biológicos , Modelos Genéticos , Fator de Transcrição PAX8 , Órgãos dos Sentidos , Fatores de Tempo , Peixe-ZebraRESUMO
During development, multicellular rosettes serve as important cellular intermediates in the formation of diverse organ systems. Multicellular rosettes are transient epithelial structures that are defined by the apical constriction of cells towards the rosette center. Due to the important role these structures play during development, understanding the molecular mechanisms by which rosettes are formed and maintained is of high interest. Utilizing the zebrafish posterior lateral line primordium (pLLP) as a model system, we identify the RhoA GEF Mcf2lb as a regulator of rosette integrity. The pLLP is a group of ~150 cells that migrates along the zebrafish trunk and is organized into epithelial rosettes; these are deposited along the trunk and will differentiate into sensory organs called neuromasts (NMs). Using single-cell RNA sequencing and whole-mount in situ hybridization, we showed that mcf2lb is expressed in the pLLP during migration. Given the known role of RhoA in rosette formation, we asked whether Mcf2lb plays a role in regulating apical constriction of cells within rosettes. Live imaging and subsequent 3D analysis of mcf2lb mutant pLLP cells showed disrupted apical constriction and subsequent rosette organization. This in turn resulted in a unique posterior Lateral Line phenotype: an excess number of deposited NMs along the trunk of the zebrafish. Cell polarity markers ZO-1 and Par-3 were apically localized, indicating that pLLP cells are normally polarized. In contrast, signaling components that mediate apical constriction downstream of RhoA, Rock-2a and non-muscle Myosin II were diminished apically. Altogether our results suggest a model whereby Mcf2lb activates RhoA, which in turn activates downstream signaling machinery to induce and maintain apical constriction in cells incorporated into rosettes.
RESUMO
Peripheral sensory neurons are a critical part of the nervous system that transmit a multitude of sensory stimuli to the central nervous system. During larval and juvenile stages in zebrafish, this function is mediated by Rohon-Beard somatosensory neurons (RBs). RBs are optically accessible and amenable to experimental manipulation, making them a powerful system for mechanistic investigation of sensory neurons. Previous studies provided evidence that RBs fall into multiple subclasses; however, the number and molecular make up of these potential RB subtypes have not been well defined. Using a single-cell RNA sequencing (scRNA-seq) approach, we demonstrate that larval RBs in zebrafish fall into three, largely non-overlapping classes of neurons. We also show that RBs are molecularly distinct from trigeminal neurons in zebrafish. Cross-species transcriptional analysis indicates that one RB subclass is similar to a mammalian group of A-fiber sensory neurons. Another RB subclass is predicted to sense multiple modalities, including mechanical stimulation and chemical irritants. We leveraged our scRNA-seq data to determine that the fibroblast growth factor (Fgf) pathway is active in RBs. Pharmacological and genetic inhibition of this pathway led to defects in axon maintenance and RB cell death. Moreover, this can be phenocopied by treatment with dovitinib, an FDA-approved Fgf inhibitor with a common side effect of peripheral neuropathy. Importantly, dovitinib-mediated axon loss can be suppressed by loss of Sarm1, a positive regulator of neuronal cell death and axonal injury. This offers a molecular target for future clinical intervention to fight neurotoxic effects of this drug.
RESUMO
In the axon terminal, microtubule stability is decreased relative to the axon shaft. The dynamic microtubule plus ends found in the axon terminal have many functions, including serving as a docking site for the Cytoplasmic dynein motor. Here, we report an unexplored function of dynein in microtubule regulation in axon terminals: regulation of microtubule stability. Using a forward genetic screen, we identified a mutant with an abnormal axon terminal structure owing to a loss of function mutation in NudC. We show that, in the axon terminal, NudC is a chaperone for the protein Lis1. Decreased Lis1 in nudc axon terminals causes dynein/dynactin accumulation and increased microtubule stability. Microtubule dynamics can be restored by pharmacologically inhibiting dynein, implicating excess dynein motor function in microtubule stabilization. Together, our data support a model in which local NudC-Lis1 modulation of the dynein motor is critical for the regulation of microtubule stability in the axon terminal.
RESUMO
BACKGROUND: Vestibular reflexes coordinate movements or sensory input with changes in body or head position. Vestibular-evoked responses that involve the extraocular muscles include the vestibulo-ocular reflex (VOR), a compensatory eye movement to stabilize retinal images. Although an angular VOR attributable to semicircular canal stimulation was reported to be absent in free-swimming zebrafish larvae, recent studies reveal that vestibular-induced eye movements can be evoked in zebrafish larvae by both static tilts and dynamic rotations that tilt the head with respect to gravity. RESULTS: We have determined herein the basis of sensitivity of the larval eye movements with respect to vestibular stimulus, developmental stage, and sensory receptors of the inner ear. For our experiments, video recordings of larvae rotated sinusoidally at 0.25 Hz were analyzed to quantitate eye movements under infrared illumination. We observed a robust response that appeared as early as 72 hours post fertilization (hpf), which increased in amplitude over time. Unlike rotation about an earth horizontal axis, rotation about an earth vertical axis at 0.25 Hz did not evoke eye movements. Moreover, vestibular-induced responses were absent in mutant cdh23 larvae and larvae lacking anterior otoliths. CONCLUSIONS: Our results provide evidence for a functional vestibulo-oculomotor circuit in 72 hpf zebrafish larvae that relies upon sensory input from anterior/utricular otolith organs.
Assuntos
Movimentos Oculares/fisiologia , Vestíbulo do Labirinto/fisiologia , Algoritmos , Animais , Caderinas/genética , Caderinas/fisiologia , Interpretação Estatística de Dados , Olho/crescimento & desenvolvimento , Análise de Fourier , Processamento de Imagem Assistida por Computador , Raios Infravermelhos , Larva , Mutação , Membrana dos Otólitos/fisiologia , Estimulação Luminosa , Reflexo Vestíbulo-Ocular/fisiologia , Rotação , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologiaRESUMO
Hair cells detect sound and movement and transmit this information via specialized ribbon synapses. Here we report that asteroid, a gene identified in an ethylnitrosourea mutagenesis screen of zebrafish larvae for auditory/vestibular mutants, encodes vesicular glutamate transporter 3 (Vglut3). A splice site mutation in exon 2 of vglut3 results in a severe truncation of the predicted protein product and morpholinos directed against the vglut3 ATG start site or the affected splice junction replicate the asteroid phenotype. In situ hybridization shows that vglut3 is exclusively expressed in hair cells of the ear and lateral line organ. A second transporter gene, vglut1, is also expressed in zebrafish hair cells, but the level of vglut1 mRNA is not increased in the absence of Vglut3. Antibodies against Vglut3 label the basal end of hair cells and labeling is not present in asteroid/vglut3 mutants. Based on the localization of Vglut3 in hair cells, we suspected that the lack of vestibulo-ocular and acoustic startle reflexes in asteroid/vglut3 mutants was attributable to a defect in synaptic transmission in hair cells. In support of this notion, action currents in postsynaptic acousticolateralis neurons are absent in asteroid/vglut3 mutants. At the ultrastructural level, mutant asteroid/vglut3 hair cells show a decrease in the number of ribbon-associated synaptic vesicles, indicating a role for Vglut3 in synaptic vesicle biogenesis and/or tethering to the ribbon body. Lack of postsynaptic action currents in the mutants suggests that the remaining hair-cell synaptic vesicles contain insufficient levels of glutamate for generation of action potentials in first-order neurons.
Assuntos
Células Ciliadas Auditivas/fisiologia , Transmissão Sináptica/fisiologia , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Estimulação Acústica/métodos , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/genética , Larva , Microscopia Eletrônica de Transmissão/métodos , Mutação/fisiologia , Proteínas do Tecido Nervoso/genética , Estimulação Física/métodos , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Reflexo Vestíbulo-Ocular/fisiologia , Sinapses/metabolismo , Sinapses/ultraestrutura , Proteínas Vesiculares de Transporte de Glutamato/genética , Peixe-ZebraRESUMO
The trafficking mechanisms and transcriptional targets downstream of long-range neurotrophic factor ligand/receptor signaling that promote axon growth are incompletely understood. Zebrafish carrying a null mutation in a neurotrophic factor receptor, Ret, displayed defects in peripheral sensory axon growth cone morphology and dynamics. Ret receptor was highly enriched in sensory pioneer neurons and Ret51 isoform was required for pioneer axon outgrowth. Loss-of-function of a cargo adaptor, Jip3, partially phenocopied Ret axonal defects, led to accumulation of activated Ret in pioneer growth cones, and reduced retrograde Ret51 transport. Jip3 and Ret51 were also retrogradely co-transported, ultimately suggesting Jip3 is a retrograde adapter of active Ret51. Finally, loss of Ret reduced transcription and growth cone localization of Myosin-X, an initiator of filopodial formation. These results show a specific role for Ret51 in pioneer axon growth, and suggest a critical role for long-range retrograde Ret signaling in regulating growth cone dynamics through downstream transcriptional changes.