RESUMO
PURPOSE: Volumetric modulated arc therapy (VMAT) is capable of acquiring projection images using electronic portal imaging device (EPID). Commercial EPID-based dosimetry software, dosimetry check (DC), allows in vivo dosimetry using projection images. The purpose of this study was to evaluate in vivo dosimetry for prostate cancer using VMAT. METHOD: VMAT plans were generated for eight patients with prostate cancer using treatment planning system (TPS), and patient quality assurances (QAs) were carried out with phantom. We analyzed five plans as phantom study and five plans as patient study. Projection images were acquired during VMAT delivery. DC converted acquired images into fluence images and used a pencil beam algorithm to calculate dose distributions delivered on the CT images of the phantom and the patients. We evaluated isocenter point doses and gamma analysis in both studies and dose indexes of planning target volume (PTV), bladder and rectum in patient study. RESULTS AND DISCUSSION: Dose differences at the isocenter were less than a criterion in both studies. Pass rates of the gamma analysis were less than a criterion by two plans in the phantom study. Dose indexes of reconstructed distribution were lower than original plans and standard deviations of PTV in reconstructed distribution were larger than original plans. The errors were caused by some issues, such as the commissioning of DC, variations in patient anatomy, and patient positioning. CONCLUSION: The method was feasible to non-invasively perform in vivo dose evaluation for prostate cancer using VMAT.
Assuntos
Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Neoplasias da Próstata/diagnóstico por imagem , Dosímetros de Radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios XRESUMO
PURPOSE: IGRT (image guided radiation therapy) is a useful technique for implementing precisely targeted radiation therapy. Quality assurance and quality control (QA/QC) medical linear accelerators with a portal imaging system (electronic portal imaging device: EPID) are the key to ensuring safe IGRT. The Winston-Lutz test (WLT) provides an evaluation of the MV isocenter, which is the intersection of radiation, collimator, and couch isocenters. A flexmap can indicate a displacement of EPID from the beam center axis as a function of gantry angles which can be removed from the images. The purpose of this study was to establish a novel method for simultaneously carrying out WLT and acquiring a flexmap using rotational irradiation. We also observed long-term changes in flexmaps over a period of five months. METHOD: We employed rotational irradiation with a rectangular field (30×30 mm). First, the displacement of EPID from the beam center axis, indicated by the ball bearing (BB) center, was evaluated using an in-house program. The location of the BB center was then modified according to WLT. Second, a second irradiation was used to acquire a flexmap. We performed this examination regularly and evaluated long-term changes in the flexmap. RESULTS AND DISCUSSION: It proved feasible to perform WLT and flexmap measurements using our proposed methods. The precision of WLT using rotational irradiation was 0.1 mm. In flexmap analysis, the maximum displacement from the mean value for each angle was 0.4 mm over five months. CONCLUSION: We have successfully established a novel method of simultaneously carrying out WLT and flexmap acquisition using rotational irradiation. Maximum displacement from the mean in each angle was 0.4 mm over five months.