Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Chem Phys ; 152(15): 154106, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32321255

RESUMO

We present an overview of the variational and diffusion quantum Monte Carlo methods as implemented in the casino program. We particularly focus on developments made in the last decade, describing state-of-the-art quantum Monte Carlo algorithms and software and discussing their strengths and weaknesses. We review a range of recent applications of casino.

2.
J Chem Phys ; 146(20): 204107, 2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28571391

RESUMO

A method is developed for generating pseudopotentials for use in correlated-electron calculations. The paradigms of shape and energy consistency are combined and defined in terms of correlated-electron wave-functions. The resulting energy consistent correlated electron pseudopotentials (eCEPPs) are constructed for H, Li-F, Sc-Fe, and Cu. Their accuracy is quantified by comparing the relaxed molecular geometries and dissociation energies which they provide with all electron results, with all quantities evaluated using coupled cluster singles, doubles, and triples calculations. Errors inherent in the pseudopotentials are also compared with those arising from a number of approximations commonly used with pseudopotentials. The eCEPPs provide a significant improvement in optimised geometries and dissociation energies for small molecules, with errors for the latter being an order-of-magnitude smaller than for Hartree-Fock-based pseudopotentials available in the literature. Gaussian basis sets are optimised for use with these pseudopotentials.

3.
J Chem Phys ; 142(6): 064110, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25681890

RESUMO

A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc - Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature.

4.
Phys Rev Lett ; 112(5): 055504, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24580611

RESUMO

Solid He is studied in the pressure and temperature ranges 1-40 TPa and 0-10 000 K using first-principles methods. Anharmonic vibrational properties are calculated within a self-consistent field framework, including the internal and free energies, density-pressure relation, stress tensor, thermal expansion, and the electron-phonon coupling renormalization of the electronic band gap. We find that an accurate description of electron-phonon coupling requires us to use a nonperturbative approach. The metallization pressure of 32.9 TPa at 0 K is larger than found previously. The vibrational effects are large; for example, at P=30 TPa the band gap is increased by 2.8 eV by electron-phonon coupling and a further 0.1 eV by thermal expansion compared to the static value. The implications of the calculated metallization pressure for the cooling of white dwarfs are discussed.

5.
Phys Rev Lett ; 112(16): 165501, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24815656

RESUMO

A theoretical study is reported of the molecular-to-atomic transition in solid hydrogen at high pressure. We use the diffusion quantum Monte Carlo method to calculate the static lattice energies of the competing phases and a density-functional-theory-based vibrational self-consistent field method to calculate anharmonic vibrational properties. We find a small but significant contribution to the vibrational energy from anharmonicity. A transition from the molecular Cmca-12 direct to the atomic I41/amd phase is found at 374 GPa. The vibrational contribution lowers the transition pressure by 91 GPa. The dissociation pressure is not very sensitive to the isotopic composition. Our results suggest that quantum melting occurs at finite temperature.

6.
J Chem Phys ; 139(1): 014101, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23822287

RESUMO

A scheme is developed for creating pseudopotentials for use in correlated-electron calculations. Pseudopotentials for the light elements H, Li, Be, B, C, N, O, and F, are reported, based on data from high-level quantum chemical calculations. Results obtained with these correlated electron pseudopotentials (CEPPs) are compared with data for atomic energy levels and the dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules obtained from coupled cluster single double triple calculations with large basis sets. The CEPPs give better results in correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature.

7.
Proc Natl Acad Sci U S A ; 107(21): 9519-24, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20457932

RESUMO

Silica (SiO(2)) is an abundant component of the Earth whose crystalline polymorphs play key roles in its structure and dynamics. First principle density functional theory (DFT) methods have often been used to accurately predict properties of silicates, but fundamental failures occur. Such failures occur even in silica, the simplest silicate, and understanding pure silica is a prerequisite to understanding the rocky part of the Earth. Here, we study silica with quantum Monte Carlo (QMC), which until now was not computationally possible for such complex materials, and find that QMC overcomes the failures of DFT. QMC is a benchmark method that does not rely on density functionals but rather explicitly treats the electrons and their interactions via a stochastic solution of Schrödinger's equation. Using ground-state QMC plus phonons within the quasiharmonic approximation of density functional perturbation theory, we obtain the thermal pressure and equations of state of silica phases up to Earth's core-mantle boundary. Our results provide the best constrained equations of state and phase boundaries available for silica. QMC indicates a transition to the dense alpha-PbO(2) structure above the core-insulating D" layer, but the absence of a seismic signature suggests the transition does not contribute significantly to global seismic discontinuities in the lower mantle. However, the transition could still provide seismic signals from deeply subducted oceanic crust. We also find an accurate shear elastic constant for stishovite and its geophysically important softening with pressure.

8.
J Chem Phys ; 136(17): 174512, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22583254

RESUMO

We have used density-functional-theory (DFT) methods together with a structure searching algorithm to make an experimentally constrained prediction of the structure of ammonia dihydrate II (ADH-II). The DFT structure is in good agreement with neutron diffraction data and verifies the prediction. The structure consists of the same basic structural elements as ADH-I, with a modest alteration to the packing, but a considerable reduction in volume. The phase diagram of the known ADH and ammonia monohydrate + water-ice structures is calculated with the Perdew-Burke-Ernzerhof density functional, and the effects of a semi-empirical dispersion corrected functional are investigated. The results of our DFT calculations of the finite-pressure elastic constants of ADH-II are compared with the available experimental data for the elastic strain coefficients.

9.
Nat Mater ; 9(8): 624-7, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20622863

RESUMO

Studying materials at terapascal (TPa) pressures will provide insights into the deep interiors of large planets and chemistry under extreme conditions. The equation of state of aluminium is of interest because it is used as a standard material in shock-wave experiments and because it is a typical sp-bonded metal. Here we use density-functional-theory methods and a random-searching approach to predict stable structures of aluminium at multiterapascal pressures, finding that the low-pressure close-packed structures transform to more open structures above 3.2 TPa (nearly ten times the pressure at the centre of the Earth), with an incommensurate host-guest structure being stable over a wide range of pressures and temperatures. We show that the high-pressure phases may be described by a two-component model consisting of positive ions and interstitial electron 'blobs', and propose that such structures are common in sp-bonded materials up to multiterapascal pressures.

10.
Phys Rev Lett ; 107(8): 087201, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21929199

RESUMO

First-principles density-functional-theory calculations show that compression of alkali metals stabilizes open structures with localized interstitial electrons which may exhibit a Stoner-type instability towards ferromagnetism. We find ferromagnetic phases of the lithium-IV-type, simple cubic, and simple hexagonal structures in the heavier alkali metals, which may be described as s-band ferromagnets. We predict that the most stable phases of potassium at low temperatures and pressures around 20 GPa are ferromagnets.

11.
Phys Rev Lett ; 107(11): 117002, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-22026696

RESUMO

Noble metals adopt close-packed structures at ambient pressure and rarely undergo structural transformation at high pressures. Platinum (Pt) is normally considered to be unreactive and is therefore not expected to form hydrides under pressure. We predict that platinum hydride (PtH) has a lower enthalpy than its constituents solid Pt and molecular hydrogen at pressures above 21.5 GPa. PtH transforms to a hexagonal close-packed or face-centered cubic (fcc) structure between 70 and 80 GPa. Linear response calculations indicate that PtH is a superconductor at these pressures with a critical temperature of about 10-25 K. These findings help to shed light on recent observations of pressure-induced metallization and superconductivity in hydrogen-rich materials. We show that the formation of fcc noble metal hydrides under pressure is common and examine the possibility of superconductivity in these materials.

12.
Phys Rev Lett ; 107(20): 207402, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22181773

RESUMO

Quantum Monte Carlo calculations of the relaxation energy, pair-correlation function, and annihilating-pair momentum density are presented for a positron immersed in a homogeneous electron gas. We find smaller relaxation energies and contact pair-correlation functions in the important low-density regime than predicted by earlier studies. Our annihilating-pair momentum densities have almost zero weight above the Fermi momentum due to the cancellation of electron-electron and electron-positron correlation effects.


Assuntos
Elétrons , Método de Monte Carlo , Teoria Quântica , Análise Espectral
13.
J Chem Phys ; 134(8): 084105, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21361525

RESUMO

Quantum Monte Carlo calculations of the first-row atoms Li-Ne and their singly positively charged ions are reported. Multideterminant-Jastrow-backflow trial wave functions are used which recover more than 98% of the correlation energy at the variational Monte Carlo level and more than 99% of the correlation energy at the diffusion Monte Carlo level for both the atoms and ions. We obtain the first ionization potentials to chemical accuracy. We also report scalar relativistic corrections to the energies, mass-polarization terms, and one- and two-electron expectation values.

14.
J Phys Condens Matter ; 23(5): 053201, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21406903

RESUMO

It is essential to know the arrangement of the atoms in a material in order to compute and understand its properties. Searching for stable structures of materials using first-principles electronic structure methods, such as density-functional-theory (DFT), is a rapidly growing field. Here we describe our simple, elegant and powerful approach to searching for structures with DFT, which we call ab initio random structure searching (AIRSS). Applications to discovering the structures of solids, point defects, surfaces, and clusters are reviewed. New results for iron clusters on graphene, silicon clusters, polymeric nitrogen, hydrogen-rich lithium hydrides, and boron are presented.

15.
Phys Rev Lett ; 104(18): 185702, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20482190

RESUMO

We develop an all-electron quantum Monte Carlo (QMC) method for solids that does not rely on pseudopotentials, and use it to construct a primary ultra-high-pressure calibration based on the equation of state of cubic boron nitride. We compute the static contribution to the free energy with the QMC method and obtain the phonon contribution from density functional theory, yielding a high-accuracy calibration up to 900 GPa usable directly in experiment. We compute the anharmonic Raman frequency shift with QMC simulations as a function of pressure and temperature, allowing optical pressure calibration. In contrast to present experimental approaches, small systematic errors in the theoretical EOS do not increase with pressure, and no extrapolation is needed. This all-electron method is applicable to first-row solids, providing a new reference for ab initio calculations of solids and benchmarks for pseudopotential accuracy.

16.
J Chem Phys ; 132(3): 034111, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20095732

RESUMO

We study the efficiency, precision and accuracy of all-electron variational and diffusion quantum Monte Carlo calculations using Slater basis sets. Starting from wave functions generated by Hartree-Fock and density functional theory, we describe an algorithm to enforce the electron-nucleus cusp condition by linear projection. For the 55 molecules in the G2 set, the diffusion quantum Monte Carlo calculations recovers an average of 95% of the correlation energy and reproduces bond energies to a mean absolute deviation of 3.2 kcal/mol. Comparing the individual total energies with essentially exact values, we investigate the error cancellation in atomization and chemical reaction path energies, giving additional insight into the sizes of nodal surface errors.

17.
Nat Mater ; 7(10): 775-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18724375

RESUMO

Ammonia is an important compound with many uses, such as in the manufacture of fertilizers, explosives and pharmaceuticals. As an archetypal hydrogen-bonded system, the properties of ammonia under pressure are of fundamental interest, and compressed ammonia has a significant role in planetary physics. We predict new high-pressure crystalline phases of ammonia (NH(3)) through a computational search based on first-principles density-functional-theory calculations. Ammonia is known to form hydrogen-bonded solids, but we predict that at higher pressures it will form ammonium amide ionic solids consisting of alternate layers of NH(4)(+) and NH(2)(-) ions. These ionic phases are predicted to be stable over a wide range of pressures readily obtainable in laboratory experiments. The occurrence of ionic phases is rationalized in terms of the relative ease of forming ammonium and amide ions from ammonia molecules, and the volume reduction on doing so. We also predict that the ionic bonding cannot be sustained under extreme compression and that, at pressures beyond the reach of current static-loading experiments, ammonia will return to hydrogen-bonded structures consisting of neutral NH(3) molecules.

18.
J Chem Phys ; 128(20): 204103, 2008 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-18513006

RESUMO

Quantum Monte Carlo and quantum chemistry techniques are used to investigate pseudopotential models of the lithium hydride (LiH) molecule. Interatomic potentials are calculated and tested by comparing with the experimental spectroscopic constants and well depth. Two recently developed pseudopotentials are tested, and the effects of introducing a Li core polarization potential are investigated. The calculations are sufficiently accurate to isolate the errors from the pseudopotentials and core polarization potential. Core-valence correlation and core relaxation are found to be important in determining the interatomic potential.

19.
J Chem Phys ; 129(22): 224101, 2008 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-19071901

RESUMO

We give an exact expression for the nth derivative of the expectation value of the energy that satisfies the zero-variance (ZV) principle when the wave function and its first n derivatives are exact. The ZV principle was previously applied to the first energy derivative ("force") within the variational Monte Carlo and mixed-estimator diffusion Monte Carlo methods. We present a new expression for the force in pure-estimator diffusion Monte Carlo that satisfies the ZV principle and can be evaluated much more efficiently than previous expressions while maintaining comparable accuracy. This expression is the sum of a pure expectation value and a variational expectation value, which separately satisfy the ZV principle. The bias in this force estimator is second order in the deviation of the trial wave function from the diffusion Monte Carlo wave function. Results for small molecules demonstrate the accuracy of the method and its statistical efficiency.

20.
J Chem Phys ; 129(8): 085103, 2008 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19044853

RESUMO

Diffusion quantum Monte Carlo (DMC) calculations for transition metal (M) porphyrin complexes (MPo, M=Ni,Cu,Zn) are reported. We calculate the binding energies of the transition metal atoms to the porphin molecule. Our DMC results are in reasonable agreement with those obtained from density functional theory calculations using the B3LYP hybrid exchange-correlation functional. Our study shows that such calculations are feasible with the DMC method.


Assuntos
Metais/química , Porfirinas/química , Catálise , Físico-Química/métodos , Elétrons , Íons , Modelos Químicos , Modelos Estatísticos , Conformação Molecular , Método de Monte Carlo , Teoria Quântica , Termodinâmica , Elementos de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA