Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 19(12): e3001510, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932561

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infects a broader range of mammalian species than previously predicted, binding a diversity of angiotensin converting enzyme 2 (ACE2) orthologs despite extensive sequence divergence. Within this sequence degeneracy, we identify a rare sequence combination capable of conferring SARS-CoV-2 resistance. We demonstrate that this sequence was likely unattainable during human evolution due to deleterious effects on ACE2 carboxypeptidase activity, which has vasodilatory and cardioprotective functions in vivo. Across the 25 ACE2 sites implicated in viral binding, we identify 6 amino acid substitutions unique to mouse-one of the only known mammalian species resistant to SARS-CoV-2. Substituting human variants at these positions is sufficient to confer binding of the SARS-CoV-2 S protein to mouse ACE2, facilitating cellular infection. Conversely, substituting mouse variants into either human or dog ACE2 abolishes viral binding, diminishing cellular infection. However, these same substitutions decrease human ACE2 activity by 50% and are predicted as pathogenic, consistent with the extreme rarity of human polymorphisms at these sites. This trade-off can be avoided, however, depending on genetic background; if substituted simultaneously, these same mutations have no deleterious effect on dog ACE2 nor that of the rodent ancestor estimated to exist 70 million years ago. This genetic contingency (epistasis) may have therefore opened the road to resistance for some species, while making humans susceptible to viruses that use these ACE2 surfaces for binding, as does SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Resistência à Doença/genética , Epistasia Genética , SARS-CoV-2/fisiologia , Aminoácidos , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Sítios de Ligação , COVID-19/enzimologia , COVID-19/genética , Cães , Evolução Molecular , Frequência do Gene , Humanos , Hidrólise , Camundongos , Mutação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Viral
2.
J Am Heart Assoc ; 13(5): e032890, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38390808

RESUMO

BACKGROUND: Implantable loop recorders (ILRs) are increasingly placed for arrhythmia detection. However, historically, ≈75% of ILR alerts are false positives, requiring significant time and effort for adjudication. The LINQII and LUX-Dx are remotely reprogrammable ILRs with dual-stage algorithms using artificial intelligence to reduce false positives, but their utility in routine clinical practice has not been studied. METHODS AND RESULTS: We identified patients with the LINQII and LUX-Dx who were monitored by the Veterans Affairs National Cardiac Device Surveillance Program between March and June 2022. ILR programming was customized on the basis of implant indication. All alerts and every 90-day scheduled transmissions were manually reviewed. ILRs were remotely reprogrammed, as appropriate, after false-positive alerts or 2 consecutive same-type alerts, unless there was ongoing clinical need for that alert. Outcomes were total number of transmissions and false positives. We performed medical record review to determine if patients experienced any adverse clinical events, including hospitalization and mortality. Among 117 LINQII patients, there were 239 total alerts, 43 (18.0%) of which were false positives. Among 105 LUX-Dx patients, there were 300 total alerts, 115 (38.3%) of which were false positives. LINQIIs were reprogrammed 22 times, resulting in a decrease in median alerts/day from 0.13 to 0.03. LUX-Dx ILRs were reprogrammed 52 times, resulting in a decrease from 0.15 to 0.01 median alerts/day. There were no adverse clinical events that could have been identified by superior or earlier arrhythmia detection. CONCLUSIONS: ILRs with artificial intelligence algorithms and remote reprogramming ability are associated with reduced alert burden because of higher true-positive rates than prior ILRs, without missing potentially consequential arrhythmias.


Assuntos
Arritmias Cardíacas , Inteligência Artificial , Humanos , Arritmias Cardíacas/diagnóstico , Próteses e Implantes , Algoritmos , Diagnóstico Precoce , Eletrocardiografia Ambulatorial/métodos
3.
G3 (Bethesda) ; 14(3)2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38198768

RESUMO

The decay of messenger RNA with a premature termination codon by nonsense-mediated decay (NMD) is an important regulatory pathway for eukaryotes and an essential pathway in mammals. NMD is typically triggered by the ribosome terminating at a stop codon that is aberrantly distant from the poly-A tail. Here, we use a fluorescence screen to identify factors involved in NMD in Saccharomyces cerevisiae. In addition to the known NMD factors, including the entire UPF family (UPF1, UPF2, and UPF3), as well as NMD4 and EBS1, we identify factors known to function in posttermination recycling and characterize their contribution to NMD. These observations in S. cerevisiae expand on data in mammals indicating that the 60S recycling factor ABCE1 is important for NMD by showing that perturbations in factors implicated in 40S recycling also correlate with a loss of NMD.


Assuntos
RNA Helicases , Saccharomyces cerevisiae , Animais , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Helicases/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , Mamíferos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA