Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sci Rep ; 11(1): 12537, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131166

RESUMO

Differentiation therapy is attracting increasing interest in cancer as it can be more specific than conventional chemotherapy approaches, and it has offered new treatment options for some cancer types, such as treating acute promyelocytic leukaemia (APL) by retinoic acid. However, there is a pressing need to identify additional molecules which act in this way, both in leukaemia and other cancer types. In this work, we hence developed a novel transcriptional drug repositioning approach, based on both bioinformatics and cheminformatics components, that enables selecting such compounds in a more informed manner. We have validated the approach for leukaemia cells, and retrospectively retinoic acid was successfully identified using our method. Prospectively, the anti-parasitic compound fenbendazole was tested in leukaemia cells, and we were able to show that it can induce the differentiation of leukaemia cells to granulocytes in low concentrations of 0.1 µM and within as short a time period as 3 days. This work hence provides a systematic and validated approach for identifying small molecules for differentiation therapy in cancer.


Assuntos
Reposicionamento de Medicamentos/tendências , Fenbendazol/química , Leucemia Promielocítica Aguda/tratamento farmacológico , Tretinoína/química , Quimioinformática/tendências , Fenbendazol/uso terapêutico , Humanos , Tretinoína/uso terapêutico
2.
J Biosci ; 41(1): 69-76, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26949089

RESUMO

Zinc finger protein 521 is highly expressed in brain, neural stem cells and early progenitors of the human hematopoietic cells. Zfp521 triggers the cascade of neurogenesis in mouse embryonic stem cells through inducing expression of the early neuroectodermal genes Sox1, Sox3 and Pax6. Fndc5, a precursor of Irisin has inducing effects on the expression level of brain derived neurotrophic factor in hippocampus. Therefore, it is most likely that Fndc5 may play an important role in neural differentiation. To exhibit whether the expression of this protein is under regulation with Zfp521, we overexpressed Zfp521 in a stable transformants of mESCs expressing EGFP under control of Fndc5 promoter. Increased expression of Zfp521 enhanced transcription levels of both EGFP and endogenous Fndc5. This result was confirmed by overexpression the aforementioned vectors in HEK cells and indicated that Zfp521 functions upstream of Fndc5 expression. It is most likely that Zfp521 may act through the binding to its response element on Fndc5 core promoter. Therefore it is concluding that an enhanced expression of Fndc5 in neural progenitor cells is stimulated by Zfp521 overexpression in these cells.


Assuntos
Fibronectinas/biossíntese , Células-Tronco Embrionárias Murinas/metabolismo , Neurogênese/genética , Fatores de Transcrição/biossíntese , Animais , Diferenciação Celular/genética , Fibronectinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fatores de Transcrição/metabolismo
3.
Gene ; 557(2): 123-9, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25497839

RESUMO

Availability of human embryonic stem cells (hESCs) has enhanced the capability of basic and clinical research in the context of human neural differentiation. Derivation of neural progenitor (NP) cells from hESCs facilitates the process of human embryonic development through the generation of neuronal subtypes. We have recently indicated that fibronectin type III domain containing 5 protein (FNDC5) expression is required for appropriate neural differentiation of mouse embryonic stem cells (mESCs). Bioinformatics analyses have shown the presence of three isoforms for human FNDC5 mRNA. To differentiate which isoform of FNDC5 is involved in the process of human neural differentiation, we have used hESCs as an in vitro model for neural differentiation by retinoic acid (RA) induction. The hESC line, Royan H5, was differentiated into a neural lineage in defined adherent culture treated by RA and basic fibroblast growth factor (bFGF). We collected all cell types that included hESCs, rosette structures, and neural cells in an attempt to assess the expression of FNDC5 isoforms. There was a contiguous increase in all three FNDC5 isoforms during the neural differentiation process. Furthermore, the highest level of expression of the isoforms was significantly observed in neural cells compared to hESCs and the rosette structures known as neural precursor cells (NPCs). High expression levels of FNDC5 in human fetal brain and spinal cord tissues have suggested the involvement of this gene in neural tube development. Additional research is necessary to determine the major function of FDNC5 in this process.


Assuntos
Células-Tronco Embrionárias/metabolismo , Fibronectinas/metabolismo , Linhagem Celular , Embrião de Mamíferos/metabolismo , Fibronectinas/genética , Expressão Gênica , Humanos , Masculino , Neurogênese , Especificidade de Órgãos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
4.
Pharmacol Rep ; 67(6): 1103-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26481528

RESUMO

BACKGROUND: Several evidences indicate stimulation of peroxisome proliferator activated receptor γ (PPARg), promotes neuronal differentiation. This study was conducted to testify the prominence of PPARγ during neural differentiation of human embryonic stem cells (hESCs). METHODS: PPARγ expression level was assessed during neural differentiation of hESCs. Meanwhile, the level of endogenous miRNAs, which could be engaged in regulation of PPARγ expression, was measured. Next, natural and synthetic components of PPARγ agonists and antagonist were implemented on neural progenitor formation during neural differentiation of hESCs. RESULTS: Data showed an increasing wave of PPARγ expression level when human neural progenitors (NPs) were formed upon retinoic acid treatment. Interestingly, there was no significant difference in the amount of PPARγ proteins during the differentiation of hESCs that is inconsistent with what we observed for RNA level. Our results indicated that miRNAs are not involved in the regulation of PPARγ expression, while proteasome-mediated degradation may to some degree be involved in this process. Among numerous treatments, PPARγ inactivation during NPs formation significantly decreased expression of NP markers. CONCLUSIONS: We conclude that a ground state of PPARγ activity is required for NP formation of hESCs during early neural differentiation. However, high expression and activity of PPARγ could not enhance the required neural differentiation, whereas the PPARγ inactivation could negatively influence NP formation from hESCs by antagonist.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Neurais/citologia , Neurogênese , PPAR gama/metabolismo , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Leupeptinas/farmacologia , MicroRNAs/fisiologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , PPAR gama/agonistas , PPAR gama/biossíntese , Complexo de Endopeptidases do Proteassoma/fisiologia , Tretinoína/farmacologia
5.
Ann Clin Lab Sci ; 43(1): 76-80, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23462609

RESUMO

Rhizomelic Chondrodysplasia Punctata (RCDP) type 1 is a peroxisomal biogenesis disorder with a genetic abnormality in PEX7 gene. In the present study, mutational analysis was performed on two Iranian RCDP patients with distinct clinical phonotype. Mutation detection was carried out by sequencing of RT-PCR product consisting the whole length of PEX7 cDNA. Sequence data revealed the same missense homozygous mutation of G to A at nucleotide 257 in exon3 of PEX7 coding sequence in both patients. Moreover, genomic analysis of the PEX7 gene confirmed the RT-PCR data. This mutation caused one amino acid residue substitution of Cys to Tyr at codon 86 located on WD1 repeat domain region of Pex7p, which severely affected the functionality of PEX7 protein. Back-transfection of vector encoding mutant Pex7p did not restore the normal peroxisomal function in RCDP patient's fibroblast cells dissimilar to the native type of PEX7.


Assuntos
Substituição de Aminoácidos/genética , Condrodisplasia Punctata Rizomélica/genética , Homozigoto , Mutação/genética , Receptores Citoplasmáticos e Nucleares/genética , Acetil-CoA C-Aciltransferase/metabolismo , Sequência de Bases , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Linhagem , Receptor 2 de Sinal de Orientação para Peroxissomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA