Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38791592

RESUMO

In certain situations, bones do not heal completely after fracturing. One of these situations is a critical-size bone defect where the bone cannot heal spontaneously. In such a case, complex fracture treatment over a long period of time is required, which carries a relevant risk of complications. The common methods used, such as autologous and allogeneic grafts, do not always lead to successful treatment results. Current approaches to increasing bone formation to bridge the gap include the application of stem cells on the fracture side. While most studies investigated the use of mesenchymal stromal cells, less evidence exists about induced pluripotent stem cells (iPSC). In this study, we investigated the potential of mouse iPSC-loaded scaffolds and decellularized scaffolds containing extracellular matrix from iPSCs for treating critical-size bone defects in a mouse model. In vitro differentiation followed by Alizarin Red staining and quantitative reverse transcription polymerase chain reaction confirmed the osteogenic differentiation potential of the iPSCs lines. Subsequently, an in vivo trial using a mouse model (n = 12) for critical-size bone defect was conducted, in which a PLGA/aCaP osteoconductive scaffold was transplanted into the bone defect for 9 weeks. Three groups (each n = 4) were defined as (1) osteoconductive scaffold only (control), (2) iPSC-derived extracellular matrix seeded on a scaffold and (3) iPSC seeded on a scaffold. Micro-CT and histological analysis show that iPSCs grafted onto an osteoconductive scaffold followed by induction of osteogenic differentiation resulted in significantly higher bone volume 9 weeks after implantation than an osteoconductive scaffold alone. Transplantation of iPSC-seeded PLGA/aCaP scaffolds may improve bone regeneration in critical-size bone defects in mice.


Assuntos
Regeneração Óssea , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Osteogênese , Alicerces Teciduais , Animais , Células-Tronco Pluripotentes Induzidas/citologia , Alicerces Teciduais/química , Camundongos , Engenharia Tecidual/métodos , Masculino , Modelos Animais de Doenças , Matriz Extracelular
2.
Nature ; 552(7685): 421-425, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29236691

RESUMO

The calcium-activated chloride channel TMEM16A is a ligand-gated anion channel that opens in response to an increase in intracellular Ca2+ concentration. The protein is broadly expressed and contributes to diverse physiological processes, including transepithelial chloride transport and the control of electrical signalling in smooth muscles and certain neurons. As a member of the TMEM16 (or anoctamin) family of membrane proteins, TMEM16A is closely related to paralogues that function as scramblases, which facilitate the bidirectional movement of lipids across membranes. The unusual functional diversity of the TMEM16 family and the relationship between two seemingly incompatible transport mechanisms has been the focus of recent investigations. Previous breakthroughs were obtained from the X-ray structure of the lipid scramblase of the fungus Nectria haematococca (nhTMEM16), and from the cryo-electron microscopy structure of mouse TMEM16A at 6.6 Å (ref. 14). Although the latter structure disclosed the architectural differences that distinguish ion channels from lipid scramblases, its low resolution did not permit a detailed molecular description of the protein or provide any insight into its activation by Ca2+. Here we describe the structures of mouse TMEM16A at high resolution in the presence and absence of Ca2+. These structures reveal the differences between ligand-bound and ligand-free states of a calcium-activated chloride channel, and when combined with functional experiments suggest a mechanism for gating. During activation, the binding of Ca2+ to a site located within the transmembrane domain, in the vicinity of the pore, alters the electrostatic properties of the ion conduction path and triggers a conformational rearrangement of an α-helix that comes into physical contact with the bound ligand, and thereby directly couples ligand binding and pore opening. Our study describes a process that is unique among channel proteins, but one that is presumably general for both functional branches of the TMEM16 family.


Assuntos
Anoctamina-1/química , Anoctamina-1/ultraestrutura , Cálcio/química , Cálcio/farmacologia , Microscopia Crioeletrônica , Ativação do Canal Iônico/efeitos dos fármacos , Animais , Anoctamina-1/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Membrana Celular/metabolismo , Glicina/metabolismo , Transporte de Íons/efeitos dos fármacos , Ligantes , Camundongos , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Eletricidade Estática
3.
Biochemistry ; 56(30): 3962-3971, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28731329

RESUMO

The uptake of glutamate by synaptic vesicles is mediated by vesicular glutamate transporters (VGLUTs). The central role of these transporters in excitatory neurotransmission underpins their importance as pharmacological targets. Although several compounds inhibit VGLUTs, highly specific inhibitors were so far unavailable, thus limiting applications to in vitro experiments. Besides their potential in pharmacology, specific inhibitors would also be beneficial for the elucidation of transport mechanisms. To overcome this shortage, we generated nanobodies (Nbs) by immunization of a llama with purified rat VGLUT1 and subsequent selection of binders from a phage display library. All identified Nbs recognize cytosolic epitopes, and two of the binders greatly reduced the rate of uptake of glutamate by reconstituted liposomes and subcellular fractions enriched with synaptic vesicles. These Nbs can be expressed as functional green fluorescent protein fusion proteins in the cytosol of HEK cells for intracellular applications as immunocytochemical and biochemical agents. The selected binders thus provide valuable tools for cell biology and neuroscience.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Córtex Cerebral/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Modelos Moleculares , Proteínas do Tecido Nervoso/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Anticorpos de Domínio Único/farmacologia , Proteína Vesicular 1 de Transporte de Glutamato/antagonistas & inibidores , Animais , Transporte Biológico/efeitos dos fármacos , Camelídeos Americanos , Células Cultivadas , Depressores do Sistema Nervoso Central/química , Depressores do Sistema Nervoso Central/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Embrião de Mamíferos/citologia , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Moduladores de Transporte de Membrana/química , Moduladores de Transporte de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Biblioteca de Peptídeos , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/química , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
4.
Biomaterials ; 294: 121989, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36628888

RESUMO

Healing large bone defects remains challenging in orthopedic surgery and is often associated with poor outcomes and complications. A major issue with bioengineered constructs is achieving a continuous interface between host bone and graft to enhance biological processes and mechanical stability. In this study, we have developed a new bioengineering strategy to produce oriented biocompatible 3D PLGA/aCaP nanocomposites with enhanced osseointegration. Decellularized scaffolds -containing only extracellular matrix- or scaffolds seeded with adipose-derived mesenchymal stromal cells were tested in a mouse model for critical size bone defects. In parallel to micro-CT analysis, SAXS tensor tomography and 2D scanning SAXS were employed to determine the 3D arrangement and nanostructure within the critical-sized bone. Both newly developed scaffold types, seeded with cells or decellularized, showed high osseointegration, higher bone quality, increased alignment of collagen fibers and optimal alignment and size of hydroxyapatite minerals.


Assuntos
Osseointegração , Alicerces Teciduais , Animais , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Alicerces Teciduais/química , Ácido Poliglicólico/química , Regeneração Óssea , Ácido Láctico/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Osteogênese
5.
Elife ; 92020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32267231

RESUMO

The TMEM175 family constitutes recently discovered K+channels that are important for autophagosome turnover and lysosomal pH regulation and are associated with the early onset of Parkinson Disease. TMEM175 channels lack a P-loop selectivity filter, a hallmark of all known K+ channels, raising the question how selectivity is achieved. Here, we report the X-ray structure of a closed bacterial TMEM175 channel in complex with a nanobody fusion-protein disclosing bound K+ ions. Our analysis revealed that a highly conserved layer of threonine residues in the pore conveys a basal K+ selectivity. An additional layer comprising two serines in human TMEM175 increases selectivity further and renders this channel sensitive to 4-aminopyridine and Zn2+. Our findings suggest that large hydrophobic side chains occlude the pore, forming a physical gate, and that channel opening by iris-like motions simultaneously relocates the gate and exposes the otherwise concealed selectivity filter to the pore lumen.


Assuntos
Canais de Potássio/química , Canais de Potássio/metabolismo , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ativação do Canal Iônico , Modelos Moleculares , Potássio/química , Potássio/metabolismo , Conformação Proteica , Serina/química , Serina/metabolismo , Treonina/química , Treonina/metabolismo
6.
Bio Protoc ; 7(3): e2116, 2017 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34458442

RESUMO

The SLC26 or SulP proteins constitute a large family of anion transporters that are ubiquitously expressed in pro- and eukaryotes. In human, SLC26 proteins perform important roles in ion homeostasis and malfunctioning of selected members is associated with diseases. This protocol details the production and crystallization of a prokaryotic SLC26 homolog, termed SLC26Dg, from Deinococcus geothermalis. Following these instructions we obtained well-folded and homogenous material of the membrane protein SLC26Dg and the nanobody Nb5776 that enabled us to crystallize the complex and determine its structure ( Geertsma et al., 2015 ). The procedure may be adapted to purify and crystallize other membrane protein complexes.

7.
Elife ; 62017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561733

RESUMO

The calcium-activated chloride channel TMEM16A is a member of a conserved protein family that comprises ion channels and lipid scramblases. Although the structure of the scramblase nhTMEM16 has defined the architecture of the family, it was unknown how a channel has adapted to cope with its distinct functional properties. Here we have addressed this question by the structure determination of mouse TMEM16A by cryo-electron microscopy and a complementary functional characterization. The protein shows a similar organization to nhTMEM16, except for changes at the site of catalysis. There, the conformation of transmembrane helices constituting a membrane-spanning furrow that provides a path for lipids in scramblases has changed to form an enclosed aqueous pore that is largely shielded from the membrane. Our study thus reveals the structural basis of anion conduction in a TMEM16 channel and it defines the foundation for the diverse functional behavior in the TMEM16 family.


Assuntos
Ânions/metabolismo , Anoctamina-1/metabolismo , Anoctamina-1/ultraestrutura , Animais , Microscopia Crioeletrônica , Camundongos , Conformação Proteica
8.
Protein Eng Des Sel ; 18(3): 153-60, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15790572

RESUMO

Opioid receptors, like many G protein-coupled receptors (GPCRs), are notoriously unstable in detergents. We have now developed a more stable variant of the mu-opioid receptor (MOR) and also a method for the immobilization of solubilized, functional opioid receptors on a solid phase (magnetic beads). Starting with the intrinsically more stable kappa-opioid receptor (KOR), we optimized the conditions (i.e. detergents and stabilizing ligands) for receptor extraction from lipid bilayers of HEK293T cells to obtain maximal amounts of functional, immobilized receptor. After immobilization, the ligand binding profile remains the same as observed for the membrane-embedded receptor. For the immobilized wild-type mu-opioid receptor, however, no conditions were found under which ligand binding capacity was retained. To solve this problem, we engineered the receptor chimera KKM where the N-terminus and the first transmembrane helix (TM1) of wild-type MOR is exchanged for the homologous receptor parts of the wild-type KOR. This hybrid receptor behaves exactly as the wild-type MOR in functional assays. Interestingly, the modified MOR is expressed at six times higher levels than wild-type MOR and is similarly stable as wild-type KOR after immobilization. Hence the immobilized MOR, represented by the chimera KKM, is now also amenable for biophysical characterization. These results are encouraging for future stability engineering of GPCRs.


Assuntos
Engenharia de Proteínas/métodos , Receptores Opioides/química , Sequência de Aminoácidos , Western Blotting , Linhagem Celular , Detergentes/farmacologia , Relação Dose-Resposta a Droga , Variação Genética , Humanos , Imunoprecipitação , Ligantes , Bicamadas Lipídicas , Magnetismo , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas/química , Receptores Opioides kappa/química , Receptores Opioides mu/química , Proteínas Recombinantes de Fusão/química , Homologia de Sequência de Aminoácidos , Transfecção
9.
Nat Struct Mol Biol ; 22(10): 803-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26367249

RESUMO

The SLC26 family of membrane proteins combines a variety of functions within a conserved molecular scaffold. Its members, besides coupled anion transporters and channels, include the motor protein Prestin, which confers electromotility to cochlear outer hair cells. To gain insight into the architecture of this protein family, we characterized the structure and function of SLC26Dg, a facilitator of proton-coupled fumarate symport, from the bacterium Deinococcus geothermalis. Its modular structure combines a transmembrane unit and a cytoplasmic STAS domain. The membrane-inserted domain consists of two intertwined inverted repeats of seven transmembrane segments each and resembles the fold of the unrelated transporter UraA. It shows an inward-facing, ligand-free conformation with a potential substrate-binding site at the interface between two helix termini at the center of the membrane. This structure defines the common framework for the diverse functional behavior of the SLC26 family.


Assuntos
Proteínas de Transporte de Ânions/química , Deinococcus/genética , Fumaratos/metabolismo , Modelos Moleculares , Família Multigênica/genética , Proteínas de Transporte de Ânions/metabolismo , Sequência de Bases , Cromatografia em Gel , Clonagem Molecular , Cristalografia por Raios X , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Fluorescência , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Reação em Cadeia da Polimerase , Conformação Proteica , Selenometionina , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA