Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
FASEB J ; 29(9): 3668-77, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25977256

RESUMO

The angiopoietin (Ang) ligands are potential therapeutic targets for lymphatic related diseases, which include lymphedema and cancer. Ang-1 and Ang-2 functions are established, but those of Ang-4 are poorly understood. We used intravital fluorescence microscopy to characterize Ang-4 actions on T241 murine fibrosarcoma-associated vessels in mice. The diameters of lymphatic vessels draining Ang-4- or VEGF-C (positive control)-expressing tumors increased to 123 and 135 µm, respectively, and parental, mock-transduced (negative controls) and tumors expressing Ang-1 or Ang-2 remained at baseline (∼60 µm). Ang-4 decreased human dermal lymphatic endothelial cell (LEC) monolayer permeability by 27% while increasing human dermal blood endothelial cell (BEC) monolayer permeability by 200%. In vivo, Ang-4 stimulated a 4.5-fold increase in tumor-associated blood vessel permeability compared with control when measured using intravital quantitative multiphoton microscopy. Ang-4 activated receptor signaling in both LECs and BECs, evidenced by tyrosine kinase with Ig and endothelial growth factor homology domains-2 (TIE2) receptor, protein kinase B, and Erk1,2 phosphorylation detectable by immunoblotting. These data suggest that Ang-4 actions are mediated through cell-type-specific networks and that lymphatic vessel dilation occurs secondarily to increased vascular leakage. Ang-4 also promoted survival of LECs. Thus, blocking Ang-4 may prune the draining lymphatic vasculature and decrease interstitial fluid pressure (IFP) by reducing vascular permeability.


Assuntos
Angiopoietinas/metabolismo , Permeabilidade Capilar , Células Endoteliais/metabolismo , Vasos Linfáticos/metabolismo , Angiopoietinas/genética , Animais , Células Endoteliais/patologia , Fibrossarcoma/genética , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Humanos , Vasos Linfáticos/patologia , Camundongos , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo
2.
Mol Endocrinol ; 18(7): 1620-30, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15071092

RESUMO

Multiple molecular chaperones interact with steroid receptors to promote functional maturation and stability of receptor complexes. The heat shock protein (Hsp)70 cochaperone Hip has been identified in conjunction with Hsp70, Hsp90, and the Hsp70/Hsp90 cochaperone Hop/Sti1p in receptor complexes during an intermediate stage of receptor assembly, but a functional requirement for Hip in the receptor assembly process has not been established. Because the budding yeast Saccharomyces cerevisiae contains orthologs for most of the receptor-associated chaperones yet lacks an orthologous Hip gene, we exploited the well-established yeast model for steroid receptor function to ask whether Hip can alter steroid receptor function in vivo. Introducing human Hip into yeast enhances hormone-dependent activation of a reporter gene by glucocorticoid receptor (GR). Because Hip does not similarly enhance signaling by mineralocorticoid, progesterone, or estrogen receptors, a general effect on transcription can be excluded. Instead, Hip promotes functional maturation of GR without increasing steady-state levels of GR protein. Unexpectedly, Hip binding to Hsp70 is not critical for boosting GR responsiveness to hormone. In conclusion, Hip functions by a previously unrecognized mechanism to promote the efficiency of GR maturation in cells.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Receptores de Glucocorticoides/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas de Transporte/genética , Estradiol/farmacologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Progesterona/farmacologia , Ratos , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Glucocorticoides/genética , Temperatura , Ativação Transcricional , Proteínas Supressoras de Tumor/genética , Leveduras/genética , Leveduras/crescimento & desenvolvimento , Leveduras/metabolismo
3.
Cell Stress Chaperones ; 8(2): 125-33, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14627198

RESUMO

Functional steroid receptor complexes are assembled and maintained by an ordered pathway of interactions involving multiple components of the cellular chaperone machinery. Two of these components, Hop and Hip, serve as co-chaperones to the major heat shock proteins (Hsps), Hsp70 and Hsp90, and participate in intermediate stages of receptor assembly. In an effort to better understand the functions of Hop and Hip in the assembly process, we focused on a region of similarity located near the C-terminus of each co-chaperone. Contained within this region is a repeated sequence motif we have termed the DP repeat. Earlier mutagenesis studies implicated the DP repeat of either Hop or Hip in Hsp70 binding and in normal assembly of the co-chaperones with progesterone receptor (PR) complexes. We report here that the DP repeat lies within a protease-resistant domain that extends to or is near the C-terminus of both co-chaperones. Point mutations in the DP repeats render the C-terminal regions hypersensitive to proteolysis. In addition, a Hop DP mutant displays altered proteolytic digestion patterns, which suggest that the DP-repeat region influences the folding of other Hop domains. Although the respective DP regions of Hop and Hip share sequence and structural similarities, they are not functionally interchangeable. Moreover, a double-point mutation within the second DP-repeat unit of Hop that converts this to the sequence found in Hip disrupts Hop function; however, the corresponding mutation in Hip does not alter its function. We conclude that the DP repeats are important structural elements within a C-terminal domain, which is important for Hop and Hip function.


Assuntos
Chaperonas Moleculares/genética , Proteínas Tirosina Quinases/genética , Análise de Sequência de Proteína , Sequência de Aminoácidos , Substituição de Aminoácidos , Anticorpos Monoclonais/imunologia , Proteínas de Drosophila , Epitopos/imunologia , Humanos , Janus Quinases , Chaperonas Moleculares/química , Chaperonas Moleculares/imunologia , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/imunologia , Alinhamento de Sequência , Fatores de Transcrição
4.
Neoplasia ; 9(12): 1038-45, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18084611

RESUMO

Blood vascular endothelial cells (BECs) and the developmentally related lymphatic endothelial cells (LECs) create complementary, yet distinct vascular networks. Each endothelial cell type interacts with flowing fluid and circulating cells, yet each vascular system has evolved specialized gene expression programs and thus both cell types display different phenotypes. BECs and LECs express distinct genes that are unique to their specific vascular microenvironment. Tumors also take advantage of the molecules that are expressed in these vascular systems to enhance their metastatic potential. We completed transcriptome analyses on primary cultured LECs and BECs, where each comparative set was isolated from the same individual. Differences were resolved in the expression of several major categories, such as cell adhesion molecules (CAMs), cytokines, and cytokine receptors. We have identified new molecules that are associated with BECs (e.g., claudin-9, CXCL11, neurexin-1, neurexin-2, and the neuronal growth factor regulator-1) and LECs (e.g., claudin-7, CD58, hyaluronan and proteoglycan link protein 1 (HAPLN1), and the poliovirus receptor-related 3 molecule) that may lead to novel therapeutic treatments for diseases of lymphatic or blood vessels, including metastasis of cancer to lymph nodes or distant organs.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Regulação da Expressão Gênica , Vasos Linfáticos/citologia , Células Cultivadas/metabolismo , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Transcrição Gênica
5.
J Biol Chem ; 279(16): 16185-93, 2004 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-14960564

RESUMO

The Hop/Sti1 co-chaperone binds to both Hsp70 and Hsp90. Biochemical and co-crystallographic studies have suggested that the EEVD-containing C terminus of Hsp70 or Hsp90 binds specifically to one of the Hop tetratricopeptide repeat domains, TPR1 or TPR2a, respectively. Mutational analyses of Hsp70 and Hop were undertaken to better characterize interactions between the C terminus of Hsp70 and Hop domains. Surprisingly, truncation of EEVD plus as many as 34 additional amino acids from the Hsp70 C terminus did not reduce the ability of Hsp70 mutants to co-immunoprecipitate with Hop, although further truncation eliminated Hop binding. Hop point mutations targeting a carboxylate clamp position in TPR1 disrupted Hsp70 binding, as was expected; however, similar point mutations in TPR2a or TPR2b also inhibited Hsp70 binding in some settings. Using a yeast-based in vivo assay for Hop function, wild type Hop and TPR2b mutants could fully complement deletion of Sti1p; TPR1 and TPR2a point mutants could partially restore activity. Conformations of Hop and Hop mutants were probed by limited proteolysis. The TPR1 mutant digested in a similar manner to wild type; however, TPR2a and TPR2b mutants each displayed greater resistance to chymotryptic digestion. All point mutants retained an ability to dimerize, and none appeared to be grossly misfolded. These results raise questions about current models for Hop/Hsp70 interaction.


Assuntos
Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP90/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Dicroísmo Circular , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Cinética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Ratos , Sequências Repetitivas de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA