Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 48(15): 8636-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24984107

RESUMO

High concentrations of uranium are commonly observed in naturally occurring amorphous silica (including opal) deposits, suggesting that incorporation of U into amorphous silica may represent a natural attenuation mechanism and promising strategy for U remediation. However, the stability of uranium in opaline silicates, determined in part by the binding mechanism for U, is an important factor in its long-term fate. U may bind directly to the opaline silicate matrix, or to materials such as iron (hydr)oxides that are subsequently occluded within the opal. Here, we examine the coordination environment of U within opaline silica to elucidate incorporation mechanisms. Precipitates (with and without ferrihydrite inclusions) were synthesized from U-bearing sodium metasilicate solutions, buffered at pH ∼ 5.6. Natural and synthetic solids were analyzed with X-ray absorption spectroscopy and a suite of other techniques. In synthetic amorphous silica, U was coordinated by silicate in a double corner-sharing coordination geometry (Si at ∼ 3.8-3.9 Å) and a small amount of uranyl and silicate in a bidentate, mononuclear (edge-sharing) coordination (Si at ∼ 3.1-3.2 Å, U at ∼ 3.8-3.9 Å). In iron-bearing synthetic solids, U was adsorbed to iron (hydr)oxide, but the coordination environment also contained silicate in both edge-sharing and corner-sharing coordination. Uranium local coordination in synthetic solids is similar to that of natural U-bearing opals that retain U for millions of years. The stability and extent of U incorporation into opaline and amorphous silica represents a long-term repository for U that may provide an alternative strategy for remediation of U contamination.


Assuntos
Dióxido de Silício/química , Urânio/química , Adsorção , Compostos Férricos , Ferro/química , Óxidos/química , Silicatos , Espectroscopia por Absorção de Raios X
2.
Chem Senses ; 38(8): 729-41, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23978687

RESUMO

The flow structure around the lateral antennular flagellum of the freshwater crayfish, Procambarus clarkii, was quantified to determine how antennule morphology and flicking kinematics affect fine-scale flow surrounding their chemosensory sensilla, called aesthetascs. Particle image velocimetry was used to measure velocity and vorticity of flow between aesthetascs of dynamically scaled physical models of P. clarkii antennules. Results revealed that the spacing between aesthetascs and antennule flicking speed induces substantial changes in fluid flow near aesthetascs. The downstroke flicking motion of the antennule occurs at a peak speed of 2.7cm/s. The returnstroke occurs at approximately 70% of this speed, but the fluid velocity between aesthetascs during the returnstroke is approximately 15% compared with the downstroke. The significant decrease in fluid flow near aesthetascs results from the reduced antennule speed and from the coupled interaction of boundary layers of the aesthetascs and antennule during the returnstroke. Odorant-laden fluid captured during the downstroke is retained between the aesthetascs during the slower returnstroke, and sufficient time occurs for odorant molecules to molecularly diffuse to aesthetasc surfaces. In addition, locally generated vorticity was observed near the tip of the aesthetascs, which may induce odorant transport to aesthetasc surfaces and enhance olfactory response times to odors.


Assuntos
Astacoidea/anatomia & histologia , Astacoidea/fisiologia , Animais , Fenômenos Biomecânicos , Células Quimiorreceptoras/citologia , Odorantes/análise , Olfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA