Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31996425

RESUMO

JC polyomavirus (JCPyV), a human-specific virus, causes the aggressive brain-demyelinating disease progressive multifocal leukoencephalopathy (PML) in individuals with depressed immune status. The increasing incidence of PML in patients receiving immunotherapeutic and chemotherapeutic agents creates a pressing clinical need to define biomarkers to stratify PML risk and develop anti-JCPyV interventions. Mouse polyomavirus (MuPyV) CNS infection causes encephalopathology and may provide insight into JCPyV-PML pathogenesis. Type I, II, and III interferons (IFNs), which all signal via the STAT1 transcription factor, mediate innate and adaptive immune defense against a variety of viral infections. We previously reported that type I and II IFNs control MuPyV infection in non-central nervous system (CNS) organs, but their relative contributions to MuPyV control in the brain remain unknown. To this end, mice deficient in type I, II, or III IFN receptors or STAT1 were infected intracerebrally with MuPyV. We found that STAT1, but not type I, II, or III IFNs, mediated viral control during acute and persistent MuPyV encephalitis. Mice deficient in STAT1 also developed severe hydrocephalus, blood-brain barrier permeability, and increased brain infiltration by myeloid cells. CD8 T cell deficiency alone did not increase MuPyV infection and pathology in the brain. In the absence of STAT1 signaling, however, depletion of CD8 T cells resulted in lytic infection of the choroid plexus and ependymal lining, marked meningitis, and 100% mortality within 2 weeks postinfection. Collectively, these findings indicate that STAT1 signaling and CD8 T cells cocontribute to controlling MuPyV infection in the brain and CNS injury.IMPORTANCE A comprehensive understanding of JCPyV-induced PML pathogenesis is needed to define determinants that predispose patients to PML, a goal whose urgency is heightened by the lack of anti-JCPyV agents. A handicap to achieving this goal is the lack of a tractable animal model to study PML pathogenesis. Using intracerebral inoculation with MuPyV, we found that MuPyV encephalitis in wild-type mice causes an encephalopathy, which is markedly exacerbated in mice deficient in STAT1, a molecule involved in transducing signals from type I, II, and III IFN receptors. CD8 T cell deficiency compounded the severity of MuPyV neuropathology and resulted in dramatically elevated virus levels in the CNS. These findings demonstrate that STAT1 signaling and CD8 T cells concomitantly act to mitigate MuPyV-encephalopathy and control viral infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Polyomavirus/imunologia , Polyomavirus/imunologia , Fator de Transcrição STAT1/imunologia , Imunidade Adaptativa , Animais , Encéfalo/patologia , Encéfalo/virologia , Encefalopatias/patologia , Encefalopatias/virologia , Plexo Corióideo , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Inata , Vírus JC/imunologia , Leucoencefalopatia Multifocal Progressiva/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Polyomavirus/mortalidade , Infecções por Polyomavirus/virologia , Fator de Transcrição STAT1/genética , Transdução de Sinais , Baço/patologia , Baço/virologia , Carga Viral
2.
Cancers (Basel) ; 14(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077737

RESUMO

Cancer-related fatigue is a common, burdensome symptom of cancer and a side-effect of chemotherapy. While a Mediterranean Diet (MedDiet) promotes energy metabolism and overall health, its effects on cancer-related fatigue remain unknown. In a randomized controlled trial, we evaluated a rigorous MedDiet intervention for feasibility and safety as well as preliminary effects on cancer-related fatigue and metabolism compared to usual care. Participants had stage I−III cancer and at least six weeks of chemotherapy scheduled. After baseline assessments, randomization occurred 2:1, MedDiet:usual care. Measures were collected at baseline, week 4, and week 8 including MedDiet adherence (score 0−14), dietary intake, and blood-based metabolic measures. Mitochondrial respiration from freshly isolated T cells was measured at baseline and four weeks. Participants (n = 33) were 51.0 ± 14.6 years old, 94% were female, and 91% were being treated for breast cancer. The study was feasible, with 100% completing the study and >70% increasing their MedDiet adherence at four and eight weeks compared to baseline. Overall, the MedDiet intervention vs. usual care had a small-moderate effect on change in fatigue at weeks 4 and 8 (ES = 0.31, 0.25, respectively). For those with a baseline MedDiet score <5 (n = 21), the MedDiet intervention had a moderate-large effect of 0.67 and 0.48 at weeks 4 and 8, respectively. The MedDiet did not affect blood-based lipids, though it had a beneficial effect on fructosamine (ES = −0.55). Fatigue was associated with mitochondrial dysfunction including lower basal respiration, maximal respiration, and spare capacity (p < 0.05 for FACIT-F fatigue subscale and BFI, usual fatigue). In conclusion, the MedDiet was feasible and attenuated cancer-related fatigue among patients undergoing chemotherapy, especially those with lower MedDiet scores at baseline.

3.
Front Immunol ; 11: 624144, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584727

RESUMO

Tissue-resident memory (TRM) CD8 T cells provide early frontline defense against regional pathogen reencounter. CD8 TRM are predominantly parked in nonlymphoid tissues and do not circulate. In addition to this anatomic difference, TRM are transcriptionally and phenotypically distinct from central-memory T cells (TCM) and effector-memory T cells (TEM). Moreover, TRM differ phenotypically, functionally, and transcriptionally across barrier tissues (e.g., gastrointestinal tract, respiratory tract, urogenital tract, and skin) and in non-barrier organs (e.g., brain, liver, kidney). In the brain, TRM are governed by a contextual milieu that balances TRM activation and preservation of essential post-mitotic neurons. Factors contributing to the development and maintenance of brain TRM, of which T cell receptor (TCR) signal strength and duration is a central determinant, vary depending on the infectious agent and modulation of TCR signaling by inhibitory markers that quell potentially pathogenic inflammation. This review will explore our current understanding of the context-dependent factors that drive the acquisition of brain (b)TRM phenotype and function, and discuss the contribution of TRM to promoting protective immune responses in situ while maintaining tissue homeostasis.


Assuntos
Encéfalo/imunologia , Linfócitos T CD8-Positivos/imunologia , Viroses do Sistema Nervoso Central/imunologia , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Vírus/imunologia , Animais , Encéfalo/patologia , Encéfalo/virologia , Linfócitos T CD8-Positivos/patologia , Viroses do Sistema Nervoso Central/patologia , Viroses do Sistema Nervoso Central/virologia , Humanos , Memória Imunológica , Inflamação/imunologia , Inflamação/patologia , Inflamação/virologia
4.
Sci Immunol ; 5(51)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948671

RESUMO

Development of tissue-resident memory (TRM) CD8 T cells depends on CD4 T cells. In polyomavirus central nervous system infection, brain CXCR5hi PD-1hi CD4 T cells produce interleukin-21 (IL-21), and CD8 T cells lacking IL-21 receptors (IL21R-/-) fail to become bTRM IL-21+ CD4 T cells exhibit elevated T cell receptor (TCR) affinity and higher TCR density. IL21R-/- brain CD8 T cells do not express CD103, depend on vascular CD8 T cells for maintenance, are antigen recall defective, and lack TRM core signature genes. CD4 T cell-deficient and IL21R-/- brain CD8 T cells show similar deficiencies in expression of genes for oxidative metabolism, and intrathecal delivery of IL-21 to CD4 T cell-depleted mice restores expression of electron transport genes in CD8 T cells to wild-type levels. Thus, high-affinity CXCR5hi PD-1hi CD4 T cells in the brain produce IL-21, which drives CD8 bTRM differentiation in response to a persistent viral infection.


Assuntos
Encéfalo/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Interleucinas/imunologia , Infecções por Polyomavirus/imunologia , Polyomavirus , Infecções Tumorais por Vírus/imunologia , Animais , Encéfalo/citologia , Diferenciação Celular , Citocinas/imunologia , Interleucinas/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/imunologia
5.
Elife ; 92020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32940605

RESUMO

JCPyV polyomavirus, a member of the human virome, causes progressive multifocal leukoencephalopathy (PML), an oft-fatal demyelinating brain disease in individuals receiving immunomodulatory therapies. Mutations in the major viral capsid protein, VP1, are common in JCPyV from PML patients (JCPyV-PML) but whether they confer neurovirulence or escape from virus-neutralizing antibody (nAb) in vivo is unknown. A mouse polyomavirus (MuPyV) with a sequence-equivalent JCPyV-PML VP1 mutation replicated poorly in the kidney, a major reservoir for JCPyV persistence, but retained the CNS infectivity, cell tropism, and neuropathology of the parental virus. This mutation rendered MuPyV resistant to a monoclonal Ab (mAb), whose specificity overlapped the endogenous anti-VP1 response. Using cryo-EM and a custom sub-particle refinement approach, we resolved an MuPyV:Fab complex map to 3.2 Å resolution. The structure revealed the mechanism of mAb evasion. Our findings demonstrate convergence between nAb evasion and CNS neurovirulence in vivo by a frequent JCPyV-PML VP1 mutation.


Assuntos
Anticorpos Monoclonais/imunologia , Capsídeo/imunologia , Mutação , Polyomavirus/patogenicidade , Animais , Feminino , Leucoencefalopatia Multifocal Progressiva/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polyomavirus/imunologia , Virulência
6.
Front Immunol ; 10: 783, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105690

RESUMO

Programmed cell death-1 (PD-1) receptor signaling dampens the functionality of T cells faced with repetitive antigenic stimulation from chronic infections or tumors. Using intracerebral (i.c.) inoculation with mouse polyomavirus (MuPyV), we have shown that CD8 T cells establish a PD-1hi, tissue-resident memory population in the brains (bTRM) of mice with a low-level persistent infection. In MuPyV encephalitis, PD-L1 was expressed on infiltrating myeloid cells, microglia and astrocytes, but not on oligodendrocytes. Engagement of PD-1 on anti-MuPyV CD8 T cells limited their effector activity. NanoString gene expression analysis showed that neuroinflammation was higher in PD-L1-/- than wild type mice at day 8 post-infection, the peak of the MuPyV-specific CD8 response. During the persistent phase of infection, however, the absence of PD-1 signaling was found to be associated with a lower inflammatory response than in wild type mice. Genetic disruption and intracerebroventricular blockade of PD-1 signaling resulted in an increase in number of MuPyV-specific CD8 bTRM and the fraction of these cells expressing CD103, the αE integrin commonly used to define tissue-resident T cells. However, PD-L1-/- mice persistently infected with MuPyV showed impaired virus control upon i.c. re-infection with MuPyV. Collectively, these data reveal a temporal duality in PD-1-mediated regulation of MuPyV-associated neuroinflammation. PD-1 signaling limited the severity of neuroinflammation during acute infection but sustained a level of inflammation during persistent infection for maintaining control of virus re-infection.


Assuntos
Encéfalo/imunologia , Linfócitos T CD8-Positivos/imunologia , Encefalite Viral/imunologia , Infecções por Polyomavirus/imunologia , Polyomavirus/imunologia , Receptor de Morte Celular Programada 1/imunologia , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Encéfalo/patologia , Linfócitos T CD8-Positivos/patologia , Encefalite Viral/genética , Encefalite Viral/patologia , Feminino , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Knockout , Infecções por Polyomavirus/genética , Infecções por Polyomavirus/patologia , Receptor de Morte Celular Programada 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA