Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 619(7971): 876-883, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468629

RESUMO

Proteins and nucleic acids can phase-separate in the cell to form concentrated biomolecular condensates1-4. The functions of condensates span many length scales: they modulate interactions and chemical reactions at the molecular scale5, organize biochemical processes at the mesoscale6 and compartmentalize cells4. Understanding the underlying mechanisms of these processes will require detailed knowledge of the rich dynamics across these scales7. The mesoscopic dynamics of biomolecular condensates have been extensively characterized8, but their behaviour at the molecular scale has remained more elusive. Here, as an example of biomolecular phase separation, we study complex coacervates of two highly and oppositely charged disordered human proteins9. Their dense phase is 1,000 times more concentrated than the dilute phase, and the resulting percolated interaction network10 leads to a bulk viscosity 300 times greater than that of water. However, single-molecule spectroscopy optimized for measurements within individual droplets reveals that at the molecular scale, the disordered proteins remain exceedingly dynamic, with their chain configurations interconverting on submicrosecond timescales. Massive all-atom molecular dynamics simulations reproduce the experimental observations and explain this apparent discrepancy: the underlying interactions between individual charged side chains are short-lived and exchange on a pico- to nanosecond timescale. Our results indicate that, despite the high macroscopic viscosity of phase-separated systems, local biomolecular rearrangements required for efficient reactions at the molecular scale can remain rapid.


Assuntos
Condensados Biomoleculares , Humanos , Condensados Biomoleculares/química , Simulação de Dinâmica Molecular , Água/química , Fatores de Tempo , Viscosidade , Imagem Individual de Molécula , Proteínas Intrinsicamente Desordenadas/química
2.
Nat Methods ; 20(10): 1479-1482, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37749213

RESUMO

Probing non-equilibrium dynamics with single-molecule spectroscopy is important for dissecting biomolecular mechanisms. However, existing microfluidic rapid-mixing systems for this purpose are incompatible with surface-adhesive biomolecules, exhibit undesirable flow dispersion and are often demanding to fabricate. Here we introduce droplet-based microfluidic mixing for single-molecule spectroscopy to overcome these limitations in a wide range of applications. We demonstrate its robust functionality with binding kinetics of even very surface-adhesive proteins on the millisecond timescale.

3.
Proc Natl Acad Sci U S A ; 120(41): e2304036120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37796987

RESUMO

Highly disordered complexes between oppositely charged intrinsically disordered proteins present a new paradigm of biomolecular interactions. Here, we investigate the driving forces of such interactions for the example of the highly positively charged linker histone H1 and its highly negatively charged chaperone, prothymosin α (ProTα). Temperature-dependent single-molecule Förster resonance energy transfer (FRET) experiments and isothermal titration calorimetry reveal ProTα-H1 binding to be enthalpically unfavorable, and salt-dependent affinity measurements suggest counterion release entropy to be an important thermodynamic driving force. Using single-molecule FRET, we also identify ternary complexes between ProTα and H1 in addition to the heterodimer at equilibrium and show how they contribute to the thermodynamics observed in ensemble experiments. Finally, we explain the observed thermodynamics quantitatively with a mean-field polyelectrolyte theory that treats counterion release explicitly. ProTα-H1 complex formation resembles the interactions between synthetic polyelectrolytes, and the underlying principles are likely to be of broad relevance for interactions between charged biomolecules in general.


Assuntos
Ligação Proteica , Termodinâmica , Entropia , Polieletrólitos/química , Temperatura
4.
Nature ; 555(7694): 61-66, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29466338

RESUMO

Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring defined binding sites or interactions between specific individual residues. Proteome-wide sequence analysis suggests that this interaction mechanism may be abundant in eukaryotes.


Assuntos
Histonas/química , Histonas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Timosina/análogos & derivados , Sítios de Ligação , Humanos , Ligação Proteica , Eletricidade Estática , Timosina/química , Timosina/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(24): 13480-13489, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32487732

RESUMO

Intrinsically disordered proteins (IDPs) abound in cellular regulation. Their interactions are often transitory and highly sensitive to salt concentration and posttranslational modifications. However, little is known about the effect of macromolecular crowding on the interactions of IDPs with their cellular targets. Here, we investigate the influence of crowding on the interaction between two IDPs that fold upon binding, with polyethylene glycol as a crowding agent. Single-molecule spectroscopy allows us to quantify the effects of crowding on a comprehensive set of observables simultaneously: the equilibrium stability of the complex, the association and dissociation kinetics, and the microviscosity, which governs translational diffusion. We show that a quantitative and coherent explanation of all observables is possible within the framework of depletion interactions if the polymeric nature of IDPs and crowders is incorporated based on recent theoretical developments. The resulting integrated framework can also rationalize important functional consequences, for example, that the interaction between the two IDPs is less enhanced by crowding than expected for folded proteins of the same size.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Cinética , Substâncias Macromoleculares/química , Modelos Químicos , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Ligação Proteica , Dobramento de Proteína , Estabilidade Proteica , Imagem Individual de Molécula , Viscosidade
6.
J Am Chem Soc ; 144(1): 52-56, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34970909

RESUMO

Single-molecule Förster resonance energy transfer (FRET) is a versatile technique for probing the structure and dynamics of biomolecules even in heterogeneous ensembles. However, because of the limited fluorescence brightness per molecule and the relatively long fluorescence lifetimes, probing ultrafast structural dynamics in the nanosecond time scale has thus far been very challenging. Here, we demonstrate that nanophotonic fluorescence enhancement in zero-mode waveguides enables measurements of previously inaccessible low-nanosecond dynamics by dramatically improving time resolution and reduces data acquisition times by more than an order of magnitude. As a prototypical example, we use this approach to probe the dynamics of a short intrinsically disordered peptide that were previously inaccessible with single-molecule FRET measurements. We show that we are now able to detect the low-nanosecond correlations in this peptide, and we obtain a detailed interpretation of the underlying distance distributions and dynamics in conjunction with all-atom molecular dynamics simulations, which agree remarkably well with the experiments. We expect this combined approach to be widely applicable to the investigation of very rapid biomolecular dynamics.


Assuntos
Transferência Ressonante de Energia de Fluorescência
7.
J Chem Phys ; 157(23): 235102, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36550025

RESUMO

Intrinsically disordered proteins (IDPs) play key roles in cellular regulation, including signal transduction, transcription, and cell-cycle control. Accordingly, IDPs can commonly interact with numerous different target proteins, and their interaction networks are expected to be highly regulated. However, many of the underlying regulatory mechanisms have remained unclear. Here, we examine the representative case of the nuclear coactivator binding domain (NCBD) of the large multidomain protein CBP, a hub in transcriptional regulation, and the interaction with several of its binding partners. Single-molecule Förster resonance energy transfer measurements show that phosphorylation of NCBD reduces its binding affinity, with effects that vary depending on the binding partner and the site and number of modifications. The complexity of the interaction is further increased by the dependence of the affinities on peptidyl-prolyl cis/trans isomerization in NCBD. Overall, our results reveal the potential for allosteric regulation on at least three levels: the different affinities of NCBD for its different binding partners, the differential modulation of these affinities by phosphorylation, and the effect of peptidyl-prolyl cis/trans isomerization on binding.


Assuntos
Dobramento de Proteína , Proteínas , Fosforilação , Isomerismo , Proteínas/metabolismo , Ligação Proteica , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/metabolismo
8.
Biophys J ; 120(21): 4842-4858, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34536387

RESUMO

Förster resonance energy transfer (FRET) and electron paramagnetic resonance (EPR) spectroscopy are complementary techniques for quantifying distances in the nanometer range. Both approaches are commonly employed for probing the conformations and conformational changes of biological macromolecules based on site-directed fluorescent or paramagnetic labeling. FRET can be applied in solution at ambient temperature and thus provides direct access to dynamics, especially if used at the single-molecule level, whereas EPR requires immobilization or work at cryogenic temperatures but provides data that can be more reliably used to extract distance distributions. However, a combined analysis of the complementary data from the two techniques has been complicated by the lack of a common modeling framework. Here, we demonstrate a systematic analysis approach based on rotamer libraries for both FRET and EPR labels to predict distance distributions between two labels from a structural model. Dynamics of the fluorophores within these distance distributions are taken into account by diffusional averaging, which improves the agreement with experiment. Benchmarking this methodology with a series of surface-exposed pairs of sites in a structured protein domain reveals that the lowest resolved distance differences can be as small as ∼0.25 nm for both techniques, with quantitative agreement between experimental and simulated transfer efficiencies within a range of ±0.045. Rotamer library analysis thus establishes a coherent way of treating experimental data from EPR and FRET and provides a basis for integrative structural modeling, including studies of conformational distributions and dynamics of biological macromolecules using both techniques.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Difusão , Espectroscopia de Ressonância de Spin Eletrônica , Conformação Molecular
10.
Nat Methods ; 15(9): 669-676, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30171252

RESUMO

Single-molecule Förster resonance energy transfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes. Using a unified, straightforward method, we obtained FRET efficiencies with s.d. between ±0.02 and ±0.05. We suggest experimental and computational procedures for converting FRET efficiencies into accurate distances, and discuss potential uncertainties in the experiment and the modeling. Our quantitative assessment of the reproducibility of intensity-based smFRET measurements and a unified correction procedure represents an important step toward the validation of distance networks, with the ultimate aim of achieving reliable structural models of biomolecular systems by smFRET-based hybrid methods.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Laboratórios/normas , Reprodutibilidade dos Testes
11.
Angew Chem Int Ed Engl ; 60(19): 10724-10729, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33587794

RESUMO

The conformations and dynamics of proteins can be influenced by crowding from the large concentrations of macromolecules within cells. Intrinsically disordered proteins (IDPs) exhibit chain compaction in crowded solutions in vitro, but no such effects were observed in cultured mammalian cells. Here, to increase intracellular crowding, we reduced the cell volume by hyperosmotic stress and used an IDP as a crowding sensor for in-cell single-molecule spectroscopy. In these more crowded cells, the IDP exhibits compaction, slower chain dynamics, and much slower translational diffusion, indicating a pronounced concentration and length-scale dependence of crowding. In vitro, these effects cannot be reproduced with small but only with large polymeric crowders. The observations can be explained with polymer theory and depletion interactions and indicate that IDPs can diffuse much more efficiently through a crowded cytosol than a globular protein of similar dimensions.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Células Eucarióticas/química , Células HeLa , Humanos , Conformação Proteica
12.
Phys Rev Lett ; 125(14): 146001, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064519

RESUMO

Many processes in chemistry, physics, and biology involve rare events in which the system escapes from a metastable state by surmounting an activation barrier. Examples range from chemical reactions, protein folding, and nucleation events to the catastrophic failure of bridges. A challenge in understanding the underlying mechanisms is that the most interesting information is contained within the rare transition paths, the exceedingly short periods when the barrier is crossed. To establish a model process that enables access to all relevant timescales, although highly disparate, we probe the dynamics of single dielectric particles in a bistable optical trap in solution. Precise localization by high-speed tracking enables us to resolve the transition paths and relate them to the detailed properties of the 3D potential within which the particle diffuses. By varying the barrier height and shape, the experiments provide a stringent benchmark of current theories of transition path dynamics.

13.
Proc Natl Acad Sci U S A ; 114(10): E1833-E1839, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28223518

RESUMO

Internal friction is an important contribution to protein dynamics at all stages along the folding reaction. Even in unfolded and intrinsically disordered proteins, internal friction has a large influence, as demonstrated with several experimental techniques and in simulations. However, these methods probe different facets of internal friction and have been applied to disparate molecular systems, raising questions regarding the compatibility of the results. To obtain an integrated view, we apply here the combination of two complementary experimental techniques, simulations, and theory to the same system: unfolded protein L. We use single-molecule Förster resonance energy transfer (FRET) to measure the global reconfiguration dynamics of the chain, and photoinduced electron transfer (PET), a contact-based method, to quantify the rate of loop formation between two residues. This combination enables us to probe unfolded-state dynamics on different length scales, corresponding to different parts of the intramolecular distance distribution. Both FRET and PET measurements show that internal friction dominates unfolded-state dynamics at low denaturant concentration, and the results are in remarkable agreement with recent large-scale molecular dynamics simulations using a new water model. The simulations indicate that intrachain interactions and dihedral angle rotation correlate with the presence of internal friction, and theoretical models of polymer dynamics provide a framework for interrelating the contribution of internal friction observed in the two types of experiments and in the simulations. The combined results thus provide a coherent and quantitative picture of internal friction in unfolded proteins that could not be attained from the individual techniques.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Modelos Teóricos , Dobramento de Proteína , Transporte de Elétrons , Transferência Ressonante de Energia de Fluorescência , Simulação de Dinâmica Molecular , Polímeros/química , Imagem Individual de Molécula , Água/química
14.
Proc Natl Acad Sci U S A ; 113(37): E5389-98, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27566405

RESUMO

The properties of unfolded proteins are essential both for the mechanisms of protein folding and for the function of the large group of intrinsically disordered proteins. However, the detailed structural and dynamical characterization of these highly dynamic and conformationally heterogeneous ensembles has remained challenging. Here we combine and compare three of the leading techniques for the investigation of unfolded proteins, NMR spectroscopy (NMR), small-angle X-ray scattering (SAXS), and single-molecule Förster resonance energy transfer (FRET), with the goal of quantitatively testing their consistency and complementarity and for obtaining a comprehensive view of the unfolded-state ensemble. Using unfolded ubiquitin as a test case, we find that its average dimensions derived from FRET and from structural ensembles calculated using the program X-PLOR-NIH based on NMR and SAXS restraints agree remarkably well; even the shapes of the underlying intramolecular distance distributions are in good agreement, attesting to the reliability of the approaches. The NMR-based results provide a highly sensitive way of quantifying residual structure in the unfolded state. FRET-based nanosecond fluorescence correlation spectroscopy allows long-range distances and chain dynamics to be probed in a time range inaccessible by NMR. The combined techniques thus provide a way of optimally using the complementarity of the available methods for a quantitative structural and dynamical description of unfolded proteins both at the global and the local level.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Desdobramento de Proteína , Proteínas/química , Conformação Proteica , Espalhamento a Baixo Ângulo , Imagem Individual de Molécula
15.
Biophys J ; 115(6): 996-1006, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30173887

RESUMO

Interactions between emerging nascent polypeptide chains and the ribosome can modulate cotranslational protein folding. However, it has remained unclear how such interactions can affect the binding of nascent chains to their cellular targets. We thus investigated on the ribosome the interaction between two intrinsically disordered proteins of opposite charge, ACTR and NCBD, which form a high-affinity complex in a coupled folding-and-binding reaction. Using fluorescence correlation spectroscopy and arrest-peptide-mediated force measurements in vitro and in vivo, we find that the ACTR-NCBD complex can form cotranslationally but only with ACTR as the nascent chain and NCBD free in solution, not vice versa. We show that this surprising asymmetry in behavior is caused by pronounced charge interactions: attraction of the positively charged nascent chain of NCBD to the negatively charged ribosomal surface competes with complex formation and prevents ACTR binding. In contrast, the negatively charged nascent ACTR is repelled by the ribosomal surface and thus remains available for productively binding its partner. Electrostatic interactions may thus be more important for cotranslational folding and binding than previously thought.


Assuntos
Coativador 3 de Receptor Nuclear/química , Coativador 3 de Receptor Nuclear/metabolismo , Dobramento de Proteína , Ribossomos/metabolismo , Modelos Moleculares , Domínios Proteicos
16.
J Struct Biol ; 201(2): 108-117, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28864298

RESUMO

Designed armadillo repeat proteins (dArmRPs) were developed to create a modular peptide binding technology where each of the structural repeats binds two residues of the target peptide. An essential prerequisite for such a technology is a dArmRP geometry that matches the peptide bond length. To this end, we determined a large set (n=27) of dArmRP X-ray structures, of which 12 were previously unpublished, to calculate curvature parameters that define their geometry. Our analysis shows that consensus dArmRPs exhibit curvatures close to the optimal range for modular peptide recognition. Binding of peptide ligands can induce a curvature within the desired range, as confirmed by single-molecule FRET experiments in solution. On the other hand, computationally designed ArmRPs, where side chains have been chosen with the intention to optimally fit into a geometrically optimized backbone, turned out to be more divergent in reality, and thus not suitable for continuous peptide binding. Furthermore, we show that the formation of a crystal lattice can induce small but significant deviations from the curvature adopted in solution, which can interfere with the evaluation of repeat protein scaffolds when high accuracy is required. This study corroborates the suitability of consensus dArmRPs as a scaffold for the development of modular peptide binders.


Assuntos
Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/metabolismo , Peptídeos/metabolismo , Proteínas do Domínio Armadillo/genética , Cálcio/química , Cálcio/metabolismo , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência/métodos , Modelos Moleculares , Peptídeos/química , Conformação Proteica , Imagem Individual de Molécula/métodos
17.
Nat Methods ; 12(8): 773-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26147918

RESUMO

Single-molecule methods have become widely used for quantifying the conformational heterogeneity and structural dynamics of biomolecules in vitro. Their application in vivo, however, has remained challenging owing to shortcomings in the design and reproducible delivery of labeled molecules, the range of applicable analysis methods, and suboptimal cell culture conditions. By addressing these limitations in an integrated approach, we demonstrate the feasibility of probing protein dynamics from milliseconds down to the nanosecond regime in live eukaryotic cells with confocal single-molecule Förster resonance energy transfer (FRET) spectroscopy. We illustrate the versatility of the approach by determining the dimensions and submicrosecond chain dynamics of an intrinsically disordered protein; by detecting even subtle changes in the temperature dependence of protein stability, including in-cell cold denaturation; and by quantifying the folding dynamics of a small protein. The methodology opens possibilities for assessing the effect of the cellular environment on biomolecular conformation, dynamics and function.


Assuntos
Conformação Proteica , Espectrofotometria/métodos , Animais , Núcleo Celular/metabolismo , Análise por Conglomerados , Reagentes de Ligações Cruzadas/química , Análise Mutacional de DNA , Genômica , Guanosina/análogos & derivados , Guanosina/química , Células HEK293 , Humanos , Fígado/metabolismo , Camundongos , Mutagênese , Mutação , RNA Mensageiro/metabolismo , RNA Nucleolar Pequeno/metabolismo , Transcrição Reversa , Raios Ultravioleta
18.
J Chem Phys ; 148(12): 123321, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29604831

RESUMO

Fully understanding biomolecular function requires detailed insight into the systems' structural dynamics. Powerful experimental techniques such as single molecule Förster Resonance Energy Transfer (FRET) provide access to such dynamic information yet have to be carefully interpreted. Molecular simulations can complement these experiments but typically face limits in accessing slow time scales and large or unstructured systems. Here, we introduce a coarse-grained simulation technique that tackles these challenges. While requiring only few parameters, we maintain full protein flexibility and include all heavy atoms of proteins, linkers, and dyes. We are able to sufficiently reduce computational demands to simulate large or heterogeneous structural dynamics and ensembles on slow time scales found in, e.g., protein folding. The simulations allow for calculating FRET efficiencies which quantitatively agree with experimentally determined values. By providing atomically resolved trajectories, this work supports the planning and microscopic interpretation of experiments. Overall, these results highlight how simulations and experiments can complement each other leading to new insights into biomolecular dynamics and function.


Assuntos
Corantes/química , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas/química , Simulação por Computador , Dobramento de Proteína
19.
J Am Chem Soc ; 139(17): 6062-6065, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28394601

RESUMO

We introduce a microfluidic double-jump mixing device for investigating rapid biomolecular kinetics with confocal single-molecule spectroscopy. This device enables nonequilibrium dynamics to be probed, e.g., transiently populated intermediates that are inaccessible with existing single-molecule approaches. We demonstrate the potential and reliability of the method on time scales from milliseconds to minutes by investigating the coupled folding and binding reaction of two intrinsically disordered proteins and the conformational changes occurring in a large cytolytic pore-forming toxin.

20.
Nanotechnology ; 28(11): 114002, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28103588

RESUMO

Single-molecule fluorescence spectroscopy is a powerful approach for probing biomolecular structure and dynamics, including protein folding. For the investigation of nonequilibrium kinetics, Förster resonance energy transfer combined with confocal multiparameter detection has proven particularly versatile, owing to the large number of observables and the broad range of accessible timescales, especially in combination with rapid microfluidic mixing. However, a comprehensive kinetic analysis of the resulting time series of transfer efficiency histograms and complementary observables can be challenging owing to the complexity of the data. Here we present and compare three different methods for the analysis of such kinetic data: singular value decomposition, multivariate curve resolution with alternating least square fitting, and model-based peak fitting, where an explicit model of both the transfer efficiency histogram of each species and the kinetic mechanism of the process is employed. While each of these methods has its merits for specific applications, we conclude that model-based peak fitting is most suitable for a quantitative analysis and comparison of kinetic mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA