Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 36(5): e22315, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35429059

RESUMO

Arterial media calcification is an active cell process. This encompasses osteochondrogenic transdifferentiation of vascular smooth muscle cells followed by the deposition of calcium-phosphate crystals. Increasing evidence suggests a significant role for endothelial cells (ECs) in the development of arterial media calcification. This manuscript explores a role for endothelial dysfunction in the disease progression of arterial media calcification. Male rats were randomly assigned to four different groups. The first group received standard chow. The second group was given L-NAME (≈50 mg kg-1 · d-1 ), to induce endothelial dysfunction, in addition to standard chow. The third group and fourth group received a warfarin-supplemented diet to induce mild calcification and the latter group was co-administered L-NAME. Prior to sacrifice, non-invasive measurement of aortic distensibility was performed. Animals were sacrificed after 6 weeks. Arterial media calcification was quantified by measuring aortic calcium and visualized on paraffin-embedded slices by the Von Kossa method. Arterial stiffness and aortic reactivity was assessed on isolated carotid segments using specialized organ chamber setups. Warfarin administration induced mineralization. Simultaneous administration of warfarin and L-NAME aggravated the arterial media calcification process. Through organ chamber experiments an increased vessel tonus was found, which could be linked to reduced basal NO availability, in arteries of warfarin-treated animals. Furthermore, increased calcification because of L-NAME administration was related to a further compromised endothelial function (next to deteriorated basal NO release also deteriorated stimulated NO release). Our findings suggest early EC changes to impact the disease progression of arterial media calcification.


Assuntos
Calcinose , Calcificação Vascular , Doenças Vasculares , Animais , Cálcio , Progressão da Doença , Células Endoteliais , Masculino , NG-Nitroarginina Metil Éster , Ratos , Túnica Média , Calcificação Vascular/induzido quimicamente , Varfarina/toxicidade
2.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835062

RESUMO

Arterial media calcification refers to the pathological deposition of calcium phosphate crystals in the arterial wall. This pathology is a common and life-threatening complication in chronic kidney disease, diabetes and osteoporosis patients. Recently, we reported that the use of a TNAP inhibitor, SBI-425, attenuated arterial media calcification in a warfarin rat model. Employing a high-dimensionality unbiased proteomic approach, we also investigated the molecular signaling events associated with blocking arterial calcification through SBI-425 dosing. The remedial actions of SBI-425 were strongly associated with (i) a significant downregulation of inflammatory (acute phase response signaling) and steroid/glucose nuclear receptor signaling (LXR/RXR signaling) pathways and (ii) an upregulation of mitochondrial metabolic pathways (TCA cycle II and Fatty Acid ß-oxidation I). Interestingly, we previously demonstrated that uremic toxin-induced arterial calcification contributes to the activation of the acute phase response signaling pathway. Therefore, both studies suggest a strong link between acute phase response signaling and arterial calcification across different conditions. The identification of therapeutic targets in these molecular signaling pathways may pave the way to novel therapies against the development of arterial media calcification.


Assuntos
Calcinose , Calcificação Vascular , Ratos , Animais , Varfarina , Reação de Fase Aguda , Proteômica , Fosfatase Alcalina/metabolismo , Calcinose/metabolismo , Calcificação Vascular/patologia
3.
J Cell Physiol ; 237(1): 1070-1086, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34658034

RESUMO

Arterial medial calcification (AMC) is the deposition of calcium phosphate in the arteries. AMC is widely thought to share similarities with physiological bone formation; however, emerging evidence suggests several key differences between these processes. N-acetylcysteine (NAC) displays antioxidant properties and can generate hydrogen sulphide (H2 S) and glutathione (GSH) from its deacetylation to l-cysteine. This study found that NAC exerts divergent effects in vitro, increasing osteoblast differentiation and bone formation by up to 5.5-fold but reducing vascular smooth muscle cell (VSMC) calcification and cell death by up to 80%. In vivo, NAC reduced AMC in a site-specific manner by 25% but had no effect on the bone. The actions of l-cysteine and H2 S mimicked those of NAC; however, the effects of H2 S were much less efficacious than NAC and l-cysteine. Pharmacological inhibition of H2 S-generating enzymes did not alter the actions of NAC or l-cysteine; endogenous production of H2 S was also unaffected. In contrast, NAC and l-cysteine increased GSH levels in calcifying VSMCs and osteoblasts by up to 3-fold. This suggests that the beneficial actions of NAC are likely to be mediated via the breakdown of l-cysteine and the subsequent GSH generation. Together, these data show that while the molecular mechanisms driving the actions of NAC appear similar, the downstream effects on cell function differ significantly between osteoblasts and calcifying VSMCs. The ability of NAC to exert these differential actions further supports the notion that there are differences between the development of pathological AMC and physiological bone formation. NAC could represent a therapeutic option for treating AMC without exerting negative effects on bone.


Assuntos
Acetilcisteína , Sulfeto de Hidrogênio , Acetilcisteína/farmacologia , Artérias/metabolismo , Glutationa/metabolismo , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Osteoblastos/metabolismo , Osteogênese
4.
Kidney Int ; 101(5): 929-944, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35271933

RESUMO

Current treatment strategies for chronic kidney disease (CKD) mainly focus on controlling risk factors. Metformin, a first-line drug for type 2 diabetes, exerts beneficial pleiotropic actions beyond its prescribed use and incipient data have revealed protective effects against the development of kidney impairment. This study evaluated the therapeutic efficacy of metformin and canagliflozin, a sodium-glucose cotransporter-2 (SGLT2) inhibitor recently approved by the United States Food and Drug Administration to treat diabetic nephropathy, in slowing the progression of established non-diabetic CKD. Rats with adenine-induced CKD were assigned to different treatment groups to receive either 200 mg/kg metformin, four or five weeks after the start of the adenine diet (established mild-moderate CKD), or 25 mg/kg canagliflozin four weeks after the start of the diet, by daily oral gavage administered during four weeks. Each treatment group was compared to a vehicle group. Chronic adenine dosing resulted in severe CKD in vehicle-treated rats as indicated by a marked rise in serum creatinine levels, a marked decrease in creatinine clearance, and a disturbed mineral metabolism. Metformin, but not canagliflozin, halted functional kidney decline. Additionally, kidneys of metformin-treated animals showed less interstitial area and inflammation as compared to the vehicle group. Proteomic analyses revealed that metformin's kidney-protective effect was associated with the activation of the Hippo signaling pathway, a highly conserved multiprotein kinase cascade that controls tissue development, organ size, cell proliferation, and apoptosis. Thus, metformin demonstrated therapeutic efficacy by halting the progression of established CKD in a rat model.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Metformina , Insuficiência Renal Crônica , Adenina/efeitos adversos , Animais , Canagliflozina/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/tratamento farmacológico , Feminino , Humanos , Masculino , Metformina/farmacologia , Metformina/uso terapêutico , Proteômica , Ratos , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico
5.
Proc Natl Acad Sci U S A ; 116(32): 16105-16110, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31341083

RESUMO

Membrane transporters and receptors are responsible for balancing nutrient and metabolite levels to aid body homeostasis. Here, we report that proximal tubule cells in kidneys sense elevated endogenous, gut microbiome-derived, metabolite levels through EGF receptors and downstream signaling to induce their secretion by up-regulating the organic anion transporter-1 (OAT1). Remote metabolite sensing and signaling was observed in kidneys from healthy volunteers and rats in vivo, leading to induced OAT1 expression and increased removal of indoxyl sulfate, a prototypical microbiome-derived metabolite and uremic toxin. Using 2D and 3D human proximal tubule cell models, we show that indoxyl sulfate induces OAT1 via AhR and EGFR signaling, controlled by miR-223. Concomitantly produced reactive oxygen species (ROS) control OAT1 activity and are balanced by the glutathione pathway, as confirmed by cellular metabolomic profiling. Collectively, we demonstrate remote metabolite sensing and signaling as an effective OAT1 regulation mechanism to maintain plasma metabolite levels by controlling their secretion.


Assuntos
Microbioma Gastrointestinal , Túbulos Renais Proximais/metabolismo , Transdução de Sinais , Animais , Ânions , Receptores ErbB/metabolismo , Glutationa/metabolismo , Humanos , Metaboloma , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo
6.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769044

RESUMO

Arterial media calcification (AMC) is predominantly regulated by vascular smooth muscle cells (VSMCs), which transdifferentiate into pro-calcifying cells. In contrast, there is little evidence for endothelial cells playing a role in the disease. The current study investigates cellular functioning and molecular pathways underlying AMC, respectively by, an ex vivo isometric organ bath set-up to explore the interaction between VSMCs and ECs and quantitative proteomics followed by functional pathway interpretation. AMC development, which was induced in mice by dietary warfarin administration, was proved by positive Von Kossa staining and a significantly increased calcium content in the aorta compared to that of control mice. The ex vivo organ bath set-up showed calcified aortic segments to be significantly more sensitive to phenylephrine induced contraction, compared to control segments. This, together with the fact that calcified segments as compared to control segments, showed a significantly smaller contraction in the absence of extracellular calcium, argues for a reduced basal NO production in the calcified segments. Moreover, proteomic data revealed a reduced eNOS activation to be part of the vascular calcification process. In summary, this study identifies a poor endothelial function, next to classic pro-calcifying stimuli, as a possible initiator of arterial calcification.


Assuntos
Células Endoteliais/patologia , Túnica Média/efeitos dos fármacos , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/patologia , Varfarina/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Cálcio/metabolismo , Transdiferenciação Celular/efeitos dos fármacos , Células Endoteliais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos DBA , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Osteogênese/efeitos dos fármacos , Túnica Média/metabolismo , Túnica Média/patologia , Calcificação Vascular/metabolismo
7.
Nephrol Dial Transplant ; 35(10): 1689-1699, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33022710

RESUMO

INTRODUCTION: Sucroferric oxyhydroxide (PA21) is an efficacious, well-tolerated iron-based phosphate binder and a promising alternative to existing compounds. We compared the effects of PA21 with those of a conventional phosphate binder on renal function, mineral homeostasis and vascular calcification in a chronic kidney disease-mineral and bone disorder (CKD-MBD) rat model. METHODS: To induce stable renal failure, rats were administered a 0.25% adenine diet for 8 weeks. Concomitantly, rats were treated with vehicle, 2.5 g/kg/day PA21, 5.0 g/kg/day PA21 or 3.0 g/kg/day calcium carbonate (CaCO3). Renal function and calcium/phosphorus/iron metabolism were evaluated during the study course. Renal fibrosis, inflammation, vascular calcifications and bone histomorphometry were quantified. RESULTS: Rats treated with 2.5 or 5.0 g/kg/day PA21 showed significantly lower serum creatinine and phosphorus and higher ionized calcium levels after 8 weeks of treatment compared with vehicle-treated rats. The better preserved renal function with PA21 went along with less severe anaemia, which was not observed with CaCO3. Both PA21 doses, in contrast to CaCO3, prevented a dramatic increase in fibroblast growth factor (FGF)-23 and significantly reduced the vascular calcium content while both compounds ameliorated CKD-related hyperparathyroid bone. CONCLUSIONS: PA21 treatment prevented an increase in serum FGF-23 and had, aside from its phosphate-lowering capacity, a beneficial impact on renal function decline (as assessed by the renal creatinine clearance) and related disorders. The protective effect of this iron-based phosphate binder on the kidney in rats, together with its low pill burden in humans, led us to investigate its use in patients with impaired renal function not yet on dialysis.


Assuntos
Modelos Animais de Doenças , Compostos Férricos/uso terapêutico , Falência Renal Crônica/tratamento farmacológico , Sacarose/uso terapêutico , Calcificação Vascular/prevenção & controle , Animais , Combinação de Medicamentos , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Falência Renal Crônica/complicações , Masculino , Fósforo/sangue , Ratos , Ratos Wistar , Calcificação Vascular/etiologia
8.
J Am Soc Nephrol ; 30(5): 751-766, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30940651

RESUMO

BACKGROUND: Protein-bound uremic toxins indoxyl sulfate (IS) and p-cresyl sulfate (PCS) have been associated with cardiovascular morbidity and mortality in patients with CKD. However, direct evidence for a role of these toxins in CKD-related vascular calcification has not been reported. METHODS: To study early and late vascular alterations by toxin exposure, we exposed CKD rats to vehicle, IS (150 mg/kg per day), or PCS (150 mg/kg per day) for either 4 days (short-term exposure) or 7 weeks (long-term exposure). We also performed unbiased proteomic analyses of arterial samples coupled to functional bioinformatic annotation analyses to investigate molecular signaling events associated with toxin-mediated arterial calcification. RESULTS: Long-term exposure to either toxin at serum levels similar to those experienced by patients with CKD significantly increased calcification in the aorta and peripheral arteries. Our analyses revealed an association between calcification events, acute-phase response signaling, and coagulation and glucometabolic signaling pathways, whereas escape from toxin-induced calcification was linked with liver X receptors and farnesoid X/liver X receptor signaling pathways. Additional metabolic linkage to these pathways revealed that IS and PCS exposure engendered a prodiabetic state evidenced by elevated resting glucose and reduced GLUT1 expression. Short-term exposure to IS and PCS (before calcification had been established) showed activation of inflammation and coagulation signaling pathways in the aorta, demonstrating that these signaling pathways are causally implicated in toxin-induced arterial calcification. CONCLUSIONS: In CKD, both IS and PCS directly promote vascular calcification via activation of inflammation and coagulation pathways and were strongly associated with impaired glucose homeostasis.


Assuntos
Carbamatos/efeitos adversos , Intolerância à Glucose/fisiopatologia , Indicã/efeitos adversos , Poliésteres/efeitos adversos , Insuficiência Renal Crônica/patologia , Calcificação Vascular/induzido quimicamente , Animais , Produtos Biológicos/farmacologia , Biópsia por Agulha , Carbamatos/farmacologia , Modelos Animais de Doenças , Imuno-Histoquímica , Indicã/farmacologia , Masculino , Metformina/farmacologia , Poliésteres/farmacologia , Distribuição Aleatória , Ratos , Ratos Wistar , Sensibilidade e Especificidade , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/patologia
9.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076470

RESUMO

Arterial calcification, the deposition of calcium-phosphate crystals in the extracellular matrix, resembles physiological bone mineralization. It is well-known that extracellular nucleotides regulate bone homeostasis raising an emerging interest in the role of these molecules on arterial calcification. The purinergic independent pathway involves the enzymes ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs), ecto-nucleoside triphosphate diphosphohydrolases (NTPDases), 5'-nucleotidase and alkaline phosphatase. These regulate the production and breakdown of the calcification inhibitor-pyrophosphate and the calcification stimulator-inorganic phosphate, from extracellular nucleotides. Maintaining ecto-nucleotidase activities in a well-defined range is indispensable as enzymatic hyper- and hypo-expression has been linked to arterial calcification. The purinergic signaling dependent pathway focusses on the activation of purinergic receptors (P1, P2X and P2Y) by extracellular nucleotides. These receptors influence arterial calcification by interfering with the key molecular mechanisms underlying this pathology, including the osteogenic switch and apoptosis of vascular cells and possibly, by favoring the phenotypic switch of vascular cells towards an adipogenic phenotype, a recent, novel hypothesis explaining the systemic prevention of arterial calcification. Selective compounds influencing the activity of ecto-nucleotidases and purinergic receptors, have recently been developed to treat arterial calcification. However, adverse side-effects on bone mineralization are possible as these compounds reasonably could interfere with physiological bone mineralization.


Assuntos
Espaço Extracelular/metabolismo , Nucleotídeos de Purina/metabolismo , Receptores Purinérgicos/metabolismo , Calcificação Vascular/metabolismo , Animais , Artérias/metabolismo , Artérias/patologia , Humanos , Transdução de Sinais
10.
Kidney Int ; 94(1): 102-113, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29716795

RESUMO

Chronic kidney disease (CKD) causes dysregulation of mineral metabolism, vascular calcification and renal osteodystrophy, an entity called 'CKD-Mineral and Bone Disorder' (CKD-MBD). Here we determine whether metformin, an anti-diabetic drug, exerts favorable effects on progressive, severe CKD and concomitant mineral metabolism disturbances. Rats with CKD-MBD, induced by a 0.25% adenine diet for eight weeks, were treated with 200 mg/kg/day metformin or vehicle from one week after CKD induction onward. Severe, stable CKD along with marked hyperphosphatemia and hypocalcemia developed in these rats which led to arterial calcification and high bone turnover disease. Metformin protected from development toward severe CKD. Metformin-treated rats did not develop hyperphosphatemia or hypocalcemia and this prevented the development of vascular calcification and inhibited the progression toward high bone turnover disease. Kidneys of the metformin group showed significantly less cellular infiltration, fibrosis and inflammation. To study a possible direct effect of metformin on the development of vascular calcification, independent of its effect on renal function, metformin (200 mg/kg/day) or vehicle was dosed for ten weeks to rats with warfarin-induced vascular calcification. The drug did not reduce aorta or small vessel calcification in this animal model. Thus, metformin protected against the development of severe CKD and preserved calcium phosphorus homeostasis. As a result of its beneficial impact on renal function, associated comorbidities such as vascular calcification and high bone turnover disease were also prevented.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica/prevenção & controle , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Insuficiência Renal Crônica/tratamento farmacológico , Calcificação Vascular/prevenção & controle , Adenina/toxicidade , Animais , Distúrbio Mineral e Ósseo na Doença Renal Crônica/etiologia , Distúrbio Mineral e Ósseo na Doença Renal Crônica/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Ratos , Ratos Wistar , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/metabolismo , Índice de Gravidade de Doença , Resultado do Tratamento , Calcificação Vascular/etiologia , Calcificação Vascular/metabolismo , Varfarina/toxicidade
11.
Int J Mol Sci ; 20(1)2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30583483

RESUMO

Over the past decades metformin has been the optimal first-line treatment for type 2 diabetes mellitus (T2DM). Only in the last few years, it has become increasingly clear that metformin exerts benign pleiotropic actions beyond its prescribed use and ongoing investigations focus on a putative beneficial impact of metformin on the kidney. Both acute kidney injury (AKI) and chronic kidney disease (CKD), two major renal health issues, often result in the need for renal replacement therapy (dialysis or transplantation) with a high socio-economic impact for the patients. Unfortunately, to date, effective treatment directly targeting the kidney is lacking. Metformin has been shown to exert beneficial effects on the kidney in various clinical trials and experimental studies performed in divergent rodent models representing different types of renal diseases going from AKI to CKD. Despite growing evidence on metformin as a candidate drug for renal diseases, in-depth research is imperative to unravel the molecular signaling pathways responsible for metformin's renoprotective actions. This review will discuss the current state-of-the-art literature on clinical and preclinical data, and put forward potential cellular mechanisms and molecular pathways by which metformin ameliorates AKI/CKD.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Rim/efeitos dos fármacos , Metformina/uso terapêutico , Insuficiência Renal Crônica/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Acidose Láctica , Injúria Renal Aguda/patologia , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Glucose/metabolismo , Humanos , Rim/patologia , Insuficiência Renal Crônica/patologia
12.
J Am Soc Nephrol ; 27(5): 1389-99, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26400570

RESUMO

There is increasing interest in the colonic microbiota as a relevant source of uremic retention solutes accumulating in CKD. Renal disease can also profoundly affect the colonic microenvironment and has been associated with a distinct colonic microbial composition. However, the influence of CKD on the colonic microbial metabolism is largely unknown. Therefore, we studied fecal metabolite profiles of hemodialysis patients and healthy controls using a gas chromatography-mass spectrometry method. We observed a clear discrimination between both groups, with 81 fecal volatile organic compounds detected at significantly different levels in hemodialysis patients and healthy controls. To further explore the differential impact of renal function loss per se versus the effect of dietary and other CKD-related factors, we also compared fecal metabolite profiles between patients on hemodialysis and household contacts on the same diet, which revealed a close resemblance. In contrast, significant differences were noted between the fecal samples of rats 6 weeks after 5/6th nephrectomy and those of sham-operated rats, still suggesting an independent influence of renal function loss. Thus, CKD associates with a distinct colonic microbial metabolism, although the effect of renal function loss per se in humans may be inferior to the effects of dietary and other CKD-related factors. The potential beneficial effect of therapeutics targeting colonic microbiota in patients with CKD remains to be examined.


Assuntos
Colo/metabolismo , Colo/microbiologia , Microbiota , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Diálise Renal , Insuficiência Renal Crônica/terapia , Adulto Jovem
13.
Calcif Tissue Int ; 99(5): 525-534, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27461215

RESUMO

Vascular calcification significantly contributes to mortality in chronic kidney disease (CKD) patients. Sevelamer and pyrophosphate (PPi) have proven to be effective in preventing vascular calcification, the former by controlling intestinal phosphate absorption, the latter by directly interfering with the hydroxyapatite crystal formation. Since most patients present with established vascular calcification, it is important to evaluate whether these compounds may also halt or reverse the progression of preexisting vascular calcification. CKD and vascular calcification were induced in male Wistar rats by a 0.75 % adenine low protein diet for 4 weeks. Treatment with PPi (30 or 120 µmol/kg/day), sevelamer carbonate (1500 mg/kg/day) or vehicle was started at the time point at which vascular calcification was present and continued for 3 weeks. Hyperphosphatemia and vascular calcification developed prior to treatment. A significant progression of aortic calcification in vehicle-treated rats with CKD was observed over the final 3-week period. Sevelamer treatment significantly reduced further progression of aortic calcification as compared to the vehicle control. No such an effect was seen for either PPi dose. Sevelamer but not PPi treatment resulted in an increase in both osteoblast and osteoid perimeter. Our study shows that sevelamer was able to reduce the progression of moderate to severe preexisting aortic calcification in a CKD rat model. Higher doses of PPi may be required to induce a similar reduction of severe established arterial calcification in this CKD model.


Assuntos
Difosfatos/farmacologia , Durapatita/antagonistas & inibidores , Insuficiência Renal Crônica/complicações , Sevelamer/farmacologia , Calcificação Vascular/patologia , Animais , Aorta/patologia , Quelantes/farmacologia , Masculino , Ratos , Ratos Wistar , Calcificação Vascular/etiologia
14.
Pediatr Nephrol ; 31(2): 195-206, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25735207

RESUMO

Canonical Wnt signaling activity contributes to physiological and adaptive bone mineralization and is an essential player in bone remodeling. Sclerostin is a prototypic soluble canonical Wnt signaling pathway inhibitor that is produced in osteocytes and blocks osteoblast differentiation and function. Therefore, sclerostin is a potent inhibitor of bone formation and mineralization. Accordingly, rodent sclerostin-deficiency models exhibit a strong bone phenotype. Moreover, blocking sclerostin represents a promising treatment perspective against osteoporosis. Beyond the bone field novel data definitely associate Wnt signaling in general and sclerostin in particular with ectopic extraosseous mineralization processes, as is evident in cardiovascular calcification or calciphylaxis. Uremia is characterized by parallel occurrence of disordered bone mineralization and accelerated cardiovascular calcification (chronic kidney disease - mineral and bone disorder, CKD-MBD), linking skeletal and cardiovascular disease-the so-called bone-vascular calcification paradox. In consequence, sclerostin may qualify as an emerging player in CKD-MBD. We present a stepwise review approach regarding the rapidly evolving field sclerostin participation in CKD-MBD. Starting from data originating in the classical bone field we look separately at three major areas of CKD-MBD: disturbed mineral metabolism, renal osteodystrophy, and uremic cardiovascular disease. Our review is intended to help the nephrologist revise the potential importance of sclerostin in CKD by focusing on how sclerostin research is gradually evolving from the classical osteoporosis niche into the area of CKD-MBD. In particular, we integrate the limited amount of available data in the context of pediatric nephrology.


Assuntos
Doenças Ósseas/fisiopatologia , Proteínas Morfogenéticas Ósseas/metabolismo , Osso e Ossos/metabolismo , Doenças Cardiovasculares/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Densidade Óssea/fisiologia , Doenças Ósseas/metabolismo , Remodelação Óssea , Marcadores Genéticos , Humanos , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais
15.
Kidney Int ; 83(6): 1109-17, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23486515

RESUMO

Calcium-based phosphate binders are used to control hyperphosphatemia; however, they promote hypercalcemia and may accelerate aortic calcification. Here we compared the effect of a phosphate binder containing calcium acetate and magnesium carbonate (CaMg) to that of sevelamer carbonate on the development of medial calcification in rats with chronic renal failure induced by an adenine diet for 4 weeks. After 1 week, rats with chronic renal failure were treated with vehicle, 375 or 750 mg/kg CaMg, or 750 mg/kg sevelamer by daily gavage for 5 weeks. Renal function was significantly impaired in all groups. Vehicle-treated rats with chronic renal failure developed severe hyperphosphatemia, but this was controlled in treated groups, particularly by CaMg. Neither CaMg nor sevelamer increased serum calcium ion levels. Induction of chronic renal failure significantly increased serum PTH, dose-dependently prevented by CaMg but not sevelamer. The aortic calcium content was significantly reduced by CaMg but not by sevelamer. The percent calcified area of the aorta was significantly lower than vehicle-treated animals for all three groups. The presence of aortic calcification was associated with increased sox9, bmp-2, and matrix gla protein expression, but this did not differ in the treatment groups. Calcium content in the carotid artery was lower with sevelamer than with CaMg but that in the femoral artery did not differ between groups. Thus, treatment with either CaMg or sevelamer effectively controlled serum phosphate levels in CRF rats and reduced aortic calcification.


Assuntos
Acetatos/farmacologia , Doenças da Aorta/prevenção & controle , Quelantes/farmacologia , Hiperfosfatemia/tratamento farmacológico , Falência Renal Crônica/complicações , Magnésio/farmacologia , Fosfatos/sangue , Poliaminas/farmacologia , Uremia/etiologia , Calcificação Vascular/prevenção & controle , Adenina , Animais , Doenças da Aorta/sangue , Doenças da Aorta/etiologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Cálcio/sangue , Compostos de Cálcio/farmacologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Hiperfosfatemia/sangue , Hiperfosfatemia/etiologia , Falência Renal Crônica/sangue , Falência Renal Crônica/induzido quimicamente , Masculino , Hormônio Paratireóideo/sangue , Ratos , Ratos Wistar , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Sevelamer , Fatores de Tempo , Uremia/sangue , Calcificação Vascular/sangue , Calcificação Vascular/etiologia , Calcificação Vascular/genética , Calcificação Vascular/patologia , Proteína de Matriz Gla
16.
Circ Res ; 108(2): 249-64, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21252152

RESUMO

Accelerated atherosclerotic plaque calcification and extensive medial calcifications are common and highly detrimental complications of chronic kidney disease. Valid murine models have been developed to investigate both pathologically distinguishable complications, which allow for better insight into the cellular mechanisms underlying these vascular pathologies and evaluation of compounds that might prevent or retard the onset or progression of vascular calcification. This review describes various experimental models that have been used for the study of arterial intimal and/or medial calcification and discusses the extent to which this experimental research has contributed to our current understanding of vascular calcification, particularly in the setting of chronic renal failure.


Assuntos
Calcinose/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Falência Renal Crônica/fisiopatologia , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/fisiologia , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Receptores de LDL/genética , Receptores de LDL/fisiologia , Túnica Íntima/fisiopatologia , Túnica Média/fisiopatologia
17.
Calcif Tissue Int ; 91(5): 307-15, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22926202

RESUMO

The present study investigated to what extent normalization of bone turnover goes along with a reduction of high-dose calcitriol-induced vascular calcifications in uremic rats. Five groups of male Sprague-Dawley rats were studied: sham-operated controls (n = 7), subtotally nephrectomized (SNX) uremic (CRF) animals (n = 12), CRF + calcitriol (vitD) (0.25 µg/kg/day) (n = 12), CRF + vitD + cinacalcet (CIN) (10 mg/kg/day) (n = 12), and CRF + vitD + parathyroidectomy (PTX) (n = 12). Treatment started 2 weeks after SNX and continued for the next 14 weeks. High-dose calcitriol treatment in hyperparathyroid rats went along with the development of distinct vascular calcification, which was significantly reduced by >50 %, in both CIN-treated and PTX animals. Compared to control animals and those of the CRF group, calcitriol treatment either in combination with CIN or PTX or not was associated with a significant increase in bone area comprising ±50 % of the total tissue area. However, whereas excessive woven bone accompanied by a dramatically increased osteoid width/area was seen in the CRF + vitD group, CIN treatment and PTX resulted in significantly reduced serum PTH level, which was accompanied by a distinct reduction of both the bone formation rate and the amount of osteoid. These data indicate that less efficient calcium and phosphorus incorporation in bone inherent to the severe hyperparathyroidism in vitamin D-treated uremic rats goes along with excessive vascular calcification, a process which is partially reversed by CIN treatment in combination with a more efficacious bone mineralization, thus restricting the availability of calcium and phosphate for being deposited in the vessel wall.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Calcitriol/efeitos adversos , Cálcio/sangue , Hiperparatireoidismo/tratamento farmacológico , Naftalenos/farmacologia , Uremia/induzido quimicamente , Calcificação Vascular/prevenção & controle , Vitaminas/efeitos adversos , Animais , Cálcio/metabolismo , Cinacalcete , Masculino , Naftalenos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Uremia/metabolismo , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/metabolismo
18.
J Bone Miner Res ; 37(4): 687-699, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35038187

RESUMO

Sclerostin is a negative regulator of the Wnt/ß-catenin signaling and is, therefore, an important inhibitor of bone formation and turnover. Because ectopic vascular calcification develops in a similar way to bone formation, one might reasonably attribute a role to sclerostin in this pathological process. Ectopic calcification, especially vascular calcification, importantly contributes to mortality in elderly and patients with diabetes, osteoporosis, chronic kidney disease (CKD), and hypertension. The central players in this ectopic calcification process are the vascular smooth muscle cells that undergo dedifferentiation and thereby acquire characteristics of bonelike cells. Therefore, we hypothesize that depletion/deactivation of the Wnt/ß-catenin signaling inhibitor sclerostin may promote the development of ectopic calcifications through stimulation of bone-anabolic effects at the level of the arteries. We investigated the role of sclerostin (encoded by the Sost gene) during vascular calcification by using either Sost-/- mice or anti-sclerostin antibody. Sost-/- and wild-type (WT) mice (C57BL/6J background) were administered an adenine-containing diet to promote the development of CKD-induced vascular calcification. Calcifications developed more extensively in the cardiac vessels of adenine-exposed Sost-/- mice, compared to adenine-exposed WT mice. This could be concluded from the cardiac calcium content as well as from cardiac tissue sections on which calcifications were visualized histochemically. In a second experiment, DBA/2J mice were administered a warfarin-containing diet to induce vascular calcifications in the absence of CKD. Here, warfarin exposure led to significantly increased aortic and renal tissue calcium content. Calcifications, which were present in the aortic medial layer and renal vessels, were significantly more pronounced when warfarin treatment was combined with anti-sclerostin antibody treatment. This study demonstrates a protective effect of sclerostin during vascular calcification. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenina/efeitos adversos , Idoso , Animais , Cálcio , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Varfarina/efeitos adversos , beta Catenina
19.
Kidney Int ; 79(11): 1166-77, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21412217

RESUMO

Processes similar to endochondral or intramembranous bone formation occur in the vascular wall. Bone and cartilage tissue as well as osteoblast- and chondrocyte-like cells are present in calcified arteries. As in bone formation, apoptosis and matrix vesicles play an important role in the initiation of vascular calcification. Recent evidence indicates that nanocrystals initially formed in the vessel wall may actively be involved in the progression of the calcification process. This review focuses on the cellular and structural similarities between bone formation and vascular calcification and discusses the initial events in this pathological mineralization process.


Assuntos
Artérias/metabolismo , Calcinose/metabolismo , Doenças Vasculares/metabolismo , Animais , Apoptose , Artérias/patologia , Remodelação Óssea , Reabsorção Óssea/metabolismo , Calcinose/etiologia , Calcinose/patologia , Humanos , Nanopartículas , Diálise Renal/efeitos adversos , Fatores de Risco , Transdução de Sinais , Doenças Vasculares/etiologia , Doenças Vasculares/patologia
20.
Am J Nephrol ; 34(4): 356-66, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21876348

RESUMO

BACKGROUND: Increased bone loss has been associated with the development of vascular calcification in patients with chronic renal failure (CRF). In this study, the effect of impaired bone metabolism on aortic calcifications was investigated in uremic rats with or without ovariectomy. METHODS: CRF was induced by administration of a 0.75% adenine/2.5% protein diet for 4 weeks. In one group, osteoporosis was induced by ovariectomy (CRF-OVX), while the other group underwent a sham-operation instead (CRF). A third group consisted of ovariectomized rats with normal renal function (OVX). At regular time intervals throughout the study, bone status and aortic calcifications were evaluated by in vivo micro-CT. At sacrifice after 6 weeks of CRF, bone histomorphometry was performed and vascular calcification was assessed by bulk calcium analysis and Von Kossa staining. RESULTS: Renal function was significantly impaired in the CRF-OVX and CRF groups. Trabecular bone loss was seen in all groups. In the CRF-OVX and CRF groups, trabecular bone density was restored after adenine withdrawal, which coincided with cortical bone loss and the development of medial calcifications in the aorta. No significant differences with regard to the degree of aortic calcifications were seen between the two CRF groups. Neither cortical bone loss nor calcifications were seen in the OVX group. Cortical bone loss significantly correlated with the severity of vascular calcification in the CRF-OVX and CRF groups, but no associations with trabecular bone changes were found. CONCLUSIONS: Cortical rather than trabecular bone loss is associated with the process of calcification in rats with adenine- induced CRF.


Assuntos
Calcinose/patologia , Falência Renal Crônica/fisiopatologia , Calcificação Vascular/patologia , Adenina/farmacologia , Animais , Aorta/patologia , Peso Corporal , Osso e Ossos/patologia , Progressão da Doença , Feminino , Osteoporose/fisiopatologia , Ovariectomia , Ratos , Ratos Wistar , Microtomografia por Raio-X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA