Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Trends Immunol ; 44(1): 44-59, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464584

RESUMO

The human microbiome is recognized as a key factor in health and disease. This has been further corroborated by identifying changes in microbiome composition and function as a novel hallmark in cancer. These effects are exerted through microbiome interactions with host cells, impacting a wide variety of developmental and physiological processes. In this review, we discuss some of the latest findings on how the bacterial component of the microbiome can influence outcomes for different cancer immunotherapy modalities, highlighting identified mechanisms of action. We also address the clinical efforts to utilize this knowledge to achieve better responses to immunotherapy. A refined understanding of microbiome variations in patients and microbiome-host interactions with cancer therapies is essential to realize optimal clinical responses.


Assuntos
Microbiota , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/microbiologia , Imunoterapia , Bactérias
2.
Gut ; 71(9): 1821-1830, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34810234

RESUMO

OBJECTIVE: Reducing FODMAPs (fermentable oligosaccharides, disaccharides, monosaccharides and polyols) can be clinically beneficial in IBS but the mechanism is incompletely understood. We aimed to detect microbial signatures that might predict response to the low FODMAP diet and assess whether microbiota compositional and functional shifts could provide insights into its mode of action. DESIGN: We used metagenomics to determine high-resolution taxonomic and functional profiles of the stool microbiota from IBS cases and household controls (n=56 pairs) on their usual diet. Clinical response and microbiota changes were studied in 41 pairs after 4 weeks on a low FODMAP diet. RESULTS: Unsupervised analysis of baseline IBS cases pre-diet identified two distinct microbiota profiles, which we refer to as IBSP (pathogenic-like) and IBSH (health-like) subtypes. IBSP microbiomes were enriched in Firmicutes and genes for amino acid and carbohydrate metabolism, but depleted in Bacteroidetes species. IBSH microbiomes were similar to controls. On the low FODMAP diet, IBSH and control microbiota were unaffected, but the IBSP signature shifted towards a health-associated microbiome with an increase in Bacteroidetes (p=0.009), a decrease in Firmicutes species (p=0.004) and normalisation of primary metabolic genes. The clinical response to the low FODMAP diet was greater in IBSP subjects compared with IBSH (p=0.02). CONCLUSION: 50% of IBS cases manifested a 'pathogenic' gut microbial signature. This shifted towards the healthy profile on the low FODMAP diet; and IBSP cases showed an enhanced clinical responsiveness to the dietary therapy. The effectiveness of FODMAP reduction in IBSP may result from the alterations in gut microbiota and metabolites produced. Microbiota signatures could be useful as biomarkers to guide IBS treatment; and investigating IBSP species and metabolic pathways might yield insights regarding IBS pathogenic mechanisms.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Dieta , Dieta com Restrição de Carboidratos , Dissacarídeos/metabolismo , Fermentação , Humanos , Monossacarídeos , Oligossacarídeos
3.
BMC Cancer ; 22(1): 99, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073853

RESUMO

BACKGROUND: The gut microbiome is implicated as a marker of response to immune checkpoint inhibitors (ICI) based on preclinical mouse models and preliminary observations in limited patient series. Furthermore, early studies suggest faecal microbial transfer may have therapeutic potential, converting ICI non-responders into responders. So far, identification of specific responsible bacterial taxa has been inconsistent, which limits future application. The MITRE study will explore and validate a microbiome signature in a larger scale prospective study across several different cancer types. METHODS: Melanoma, renal cancer and non-small cell lung cancer patients who are planned to receive standard immune checkpoint inhibitors are being recruited to the MITRE study. Longitudinal stool samples are collected prior to treatment, then at 6 weeks, 3, 6 and 12 months during treatment, or at disease progression/recurrence (whichever is sooner), as well as after a severe (≥grade 3 CTCAE v5.0) immune-related adverse event. Additionally, whole blood, plasma, buffy coat, RNA and peripheral blood mononuclear cells (PBMCs) is collected at similar time points and will be used for exploratory analyses. Archival tumour tissue, tumour biopsies at progression/relapse, as well as any biopsies from body organs collected after a severe toxicity are collected. The primary outcome measure is the ability of the microbiome signature to predict 1 year progression-free survival (PFS) in patients with advanced disease. Secondary outcomes include microbiome correlations with toxicity and other efficacy end-points. Biosamples will be used to explore immunological and genomic correlates. A sub-study will evaluate both COVID-19 antigen and antibody associations with the microbiome. DISCUSSION: There is an urgent need to identify biomarkers that are predictive of treatment response, resistance and toxicity to immunotherapy. The data generated from this study will both help inform patient selection for these drugs and provide information that may allow therapeutic manipulation of the microbiome to improve future patient outcomes. TRIAL REGISTRATION: NCT04107168 , ClinicalTrials.gov, registered 09/27/2019. Protocol V3.2 (16/04/2021).


Assuntos
Microbioma Gastrointestinal , Inibidores de Checkpoint Imunológico/uso terapêutico , Consórcios Microbianos , Neoplasias/terapia , Anticorpos Antivirais/análise , Antígenos Virais/análise , Carcinoma Pulmonar de Células não Pequenas/terapia , Progressão da Doença , Fezes/microbiologia , Microbioma Gastrointestinal/imunologia , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias Renais/terapia , Neoplasias Pulmonares/terapia , Melanoma/terapia , Consórcios Microbianos/imunologia , Intervalo Livre de Progressão , Estudos Prospectivos , SARS-CoV-2/imunologia , Neoplasias Cutâneas/terapia
4.
Nature ; 533(7604): 543-546, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27144353

RESUMO

Our intestinal microbiota harbours a diverse bacterial community required for our health, sustenance and wellbeing. Intestinal colonization begins at birth and climaxes with the acquisition of two dominant groups of strict anaerobic bacteria belonging to the Firmicutes and Bacteroidetes phyla. Culture-independent, genomic approaches have transformed our understanding of the role of the human microbiome in health and many diseases. However, owing to the prevailing perception that our indigenous bacteria are largely recalcitrant to culture, many of their functions and phenotypes remain unknown. Here we describe a novel workflow based on targeted phenotypic culturing linked to large-scale whole-genome sequencing, phylogenetic analysis and computational modelling that demonstrates that a substantial proportion of the intestinal bacteria are culturable. Applying this approach to healthy individuals, we isolated 137 bacterial species from characterized and candidate novel families, genera and species that were archived as pure cultures. Whole-genome and metagenomic sequencing, combined with computational and phenotypic analysis, suggests that at least 50-60% of the bacterial genera from the intestinal microbiota of a healthy individual produce resilient spores, specialized for host-to-host transmission. Our approach unlocks the human intestinal microbiota for phenotypic analysis and reveals how a marked proportion of oxygen-sensitive intestinal bacteria can be transmitted between individuals, affecting microbiota heritability.


Assuntos
Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Técnicas de Tipagem Bacteriana , Microbioma Gastrointestinal/fisiologia , Anaerobiose , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Técnicas de Cultura de Células , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Genoma Bacteriano/genética , Saúde , Humanos , Metagenoma/genética , Metagenômica , Oxigênio/metabolismo , Oxigênio/farmacologia , Fenótipo , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie , Esporos Bacterianos/classificação , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento
5.
Appl Environ Microbiol ; 81(4): 1297-1308, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25501479

RESUMO

Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin­Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15 °C and 37 °C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus inthe L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli.


Assuntos
Genoma Bacteriano , Lactobacillus/citologia , Lactobacillus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Flagelina/genética , Flagelina/metabolismo , Regulação Bacteriana da Expressão Gênica , Genômica , Lactobacillus/classificação , Lactobacillus/metabolismo , Óperon , Filogenia
6.
FEMS Yeast Res ; 15(7)2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26347504

RESUMO

Candida albicans is a polymorphic yeast species that often forms part of the commensal gastrointestinal mycobiota of healthy humans. It is also an important opportunistic pathogen. A tripartite interaction involving C. albicans, the resident microbiota and host immunity maintains C. albicans in its commensal form. The influence of each of these factors on C. albicans carriage is considered herein, with particular focus on the mycobiota and the approaches used to study it, models of gastrointestinal colonization by C. albicans, the C. albicans genes and phenotypes that are necessary for commensalism and the host factors that influence C. albicans carriage.


Assuntos
Candida albicans/fisiologia , Portador Sadio/microbiologia , Trato Gastrointestinal/microbiologia , Simbiose , Animais , Candida albicans/imunologia , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Humanos , Interações Microbianas , Modelos Animais
7.
Nat Commun ; 13(1): 1445, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301310

RESUMO

Mobile genetic elements (MGEs) carrying antibiotic resistance genes (ARGs) disseminate ARGs when they mobilise into new bacterial hosts. The nature of such horizontal gene transfer (HGT) events between human gut commensals and pathogens remain poorly characterised. Here, we compare 1354 cultured commensal strains (540 species) to 45,403 pathogen strains (12 species) and find 64,188 MGE-mediated ARG transfer events between the two groups using established methods. Among the 5931 MGEs, we find 15 broad host range elements predicted to have crossed different bacterial phyla while also occurring in animal and environmental microbiomes. We experimentally demonstrate that predicted broad host range MGEs can mobilise from commensals Dorea longicatena and Hungatella hathewayi to pathogen Klebsiella oxytoca, crossing phyla simultaneously. Our work establishes the MGE-mediated ARG dissemination network between human gut commensals and pathogens and highlights broad host range MGEs as targets for future ARG dissemination management.


Assuntos
Especificidade de Hospedeiro , Microbiota , Animais , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Especificidade de Hospedeiro/genética , Humanos , Sequências Repetitivas Dispersas/genética , Microbiota/genética
8.
Microb Cell Fact ; 10 Suppl 1: S13, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21995554

RESUMO

BACKGROUND: The genus Lactobacillus is characterized by an extraordinary degree of phenotypic and genotypic diversity, which recent genomic analyses have further highlighted. However, the choice of species for sequencing has been non-random and unequal in distribution, with only a single representative genome from the L. salivarius clade available to date. Furthermore, there is no data to facilitate a functional genomic analysis of motility in the lactobacilli, a trait that is restricted to the L. salivarius clade. RESULTS: The 2.06 Mb genome of the bovine isolate Lactobacillus ruminis ATCC 27782 comprises a single circular chromosome, and has a G+C content of 44.4%. In silico analysis identified 1901 coding sequences, including genes for a pediocin-like bacteriocin, a single large exopolysaccharide-related cluster, two sortase enzymes, two CRISPR loci and numerous IS elements and pseudogenes. A cluster of genes related to a putative pilin was identified, and shown to be transcribed in vitro. A high quality draft assembly of the genome of a second L. ruminis strain, ATCC 25644 isolated from humans, suggested a slightly larger genome of 2.138 Mb, that exhibited a high degree of synteny with the ATCC 27782 genome. In contrast, comparative analysis of L. ruminis and L. salivarius identified a lack of long-range synteny between these closely related species. Comparison of the L. salivarius clade core proteins with those of nine other Lactobacillus species distributed across 4 major phylogenetic groups identified the set of shared proteins, and proteins unique to each group. CONCLUSIONS: The genome of L. ruminis provides a comparative tool for directing functional analyses of other members of the L. salivarius clade, and it increases understanding of the divergence of this distinct Lactobacillus lineage from other commensal lactobacilli. The genome sequence provides a definitive resource to facilitate investigation of the genetics, biochemistry and host interactions of these motile intestinal lactobacilli.


Assuntos
Genoma Bacteriano , Intestinos/microbiologia , Lactobacillus/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Metabolismo dos Carboidratos , Bovinos , Genômica , Humanos , Lactobacillus/metabolismo , Dados de Sequência Molecular
9.
Nat Biotechnol ; 37(2): 186-192, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30718869

RESUMO

Understanding gut microbiome functions requires cultivated bacteria for experimental validation and reference bacterial genome sequences to interpret metagenome datasets and guide functional analyses. We present the Human Gastrointestinal Bacteria Culture Collection (HBC), a comprehensive set of 737 whole-genome-sequenced bacterial isolates, representing 273 species (105 novel species) from 31 families found in the human gastrointestinal microbiota. The HBC increases the number of bacterial genomes derived from human gastrointestinal microbiota by 37%. The resulting global Human Gastrointestinal Bacteria Genome Collection (HGG) classifies 83% of genera by abundance across 13,490 shotgun-sequenced metagenomic samples, improves taxonomic classification by 61% compared to the Human Microbiome Project (HMP) genome collection and achieves subspecies-level classification for almost 50% of sequences. The improved resource of gastrointestinal bacterial reference sequences circumvents dependence on de novo assembly of metagenomes and enables accurate and cost-effective shotgun metagenomic analyses of human gastrointestinal microbiota.


Assuntos
Genoma Bacteriano , Metagenoma , Metagenômica , Bactérias/classificação , Biologia Computacional/métodos , Mapeamento de Sequências Contíguas , Microbioma Gastrointestinal , Genoma Humano , Humanos , Filogenia , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie
10.
Curr Opin Microbiol ; 42: 47-52, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29112885

RESUMO

Advances in high-throughput sequencing technologies and the development of sophisticated bioinformatics analysis methods, algorithms, and pipelines to handle the large amounts of data generated have driven the field of human microbiome research forward. This specialist knowledge has been crucial to thoroughly mine the human gut microbiota, particularly in the absence of methods for the routine cultivation of most enteric microorganisms. In recent years, however, significant efforts have been made to address the 'great plate count anomaly' and to overcome the barriers to cultivation of the fastidious and mostly strictly anaerobic bacteria that reside in the human gut. As a result, many new species have been discovered, characterised, genome sequenced, and deposited in culture collections. These continually expanding resources enable experimental investigation of the human gut microbiota, validation of hypotheses made with sequence-based analyses, and phenotypic characterisation of its constituent microbes. Herein we propose a variant of Koch's postulates, aimed at providing a framework to establish causation in microbiome studies, with a particular focus on demonstrating the health-promoting role of the commensal gut microbiota.


Assuntos
Microbiota , Simbiose , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Humanos , Metagenômica/métodos , Pesquisa
11.
Nat Rev Microbiol ; 15(9): 531-543, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28603278

RESUMO

Transmission of commensal intestinal bacteria between humans could promote health by establishing, maintaining and replenishing microbial diversity in the microbiota of an individual. Unlike pathogens, the routes of transmission for commensal bacteria remain unappreciated and poorly understood, despite the likely commonalities between both. Consequently, broad infection control measures that are designed to prevent pathogen transmission and infection, such as oversanitation and the overuse of antibiotics, may inadvertently affect human health by altering normal commensal transmission. In this Review, we discuss the mechanisms and factors that influence host-to-host transmission of the intestinal microbiota and examine how a better understanding of these processes will identify new approaches to nurture and restore transmission routes that are used by beneficial bacteria.


Assuntos
Translocação Bacteriana/fisiologia , Microbioma Gastrointestinal/fisiologia , Dinâmica Populacional , Humanos
12.
PLoS One ; 8(7): e68919, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935906

RESUMO

Some Eubacterium and Roseburia species are among the most prevalent motile bacteria present in the intestinal microbiota of healthy adults. These flagellate species contribute "cell motility" category genes to the intestinal microbiome and flagellin proteins to the intestinal proteome. We reviewed and revised the annotation of motility genes in the genomes of six Eubacterium and Roseburia species that occur in the human intestinal microbiota and examined their respective locus organization by comparative genomics. Motility gene order was generally conserved across these loci. Five of these species harbored multiple genes for predicted flagellins. Flagellin proteins were isolated from R. inulinivorans strain A2-194 and from E. rectale strains A1-86 and M104/1. The amino-termini sequences of the R. inulinivorans and E. rectale A1-86 proteins were almost identical. These protein preparations stimulated secretion of interleukin-8 (IL-8) from human intestinal epithelial cell lines, suggesting that these flagellins were pro-inflammatory. Flagellins from the other four species were predicted to be pro-inflammatory on the basis of alignment to the consensus sequence of pro-inflammatory flagellins from the ß- and γ- proteobacteria. Many fliC genes were deduced to be under the control of σ(28). The relative abundance of the target Eubacterium and Roseburia species varied across shotgun metagenomes from 27 elderly individuals. Genes involved in the flagellum biogenesis pathways of these species were variably abundant in these metagenomes, suggesting that the current depth of coverage used for metagenomic sequencing (3.13-4.79 Gb total sequence in our study) insufficiently captures the functional diversity of genomes present at low (≤1%) relative abundance. E. rectale and R. inulinivorans thus appear to synthesize complex flagella composed of flagellin proteins that stimulate IL-8 production. A greater depth of sequencing, improved evenness of sequencing and improved metagenome assembly from short reads will be required to facilitate in silico analyses of complete complex biochemical pathways for low-abundance target species from shotgun metagenomes.


Assuntos
Bactérias/crescimento & desenvolvimento , Flagelina/metabolismo , Mediadores da Inflamação/metabolismo , Intestinos/microbiologia , Microbiota , Adulto , Idoso , Sequência de Aminoácidos , Bactérias/genética , Sítios de Ligação , Simulação por Computador , Eletroforese em Gel de Poliacrilamida , Fezes/microbiologia , Flagelina/química , Flagelina/genética , Flagelina/isolamento & purificação , Ordem dos Genes/genética , Loci Gênicos/genética , Genoma Bacteriano/genética , Genômica , Humanos , Interleucina-8/metabolismo , Metagenoma , Anotação de Sequência Molecular , Dados de Sequência Molecular , Movimento , Regiões Promotoras Genéticas/genética , Ribossomos/metabolismo , Alinhamento de Sequência
13.
PLoS One ; 7(7): e40592, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808200

RESUMO

Lactobacillus ruminis is one of at least twelve motile but poorly characterized species found in the genus Lactobacillus. Of these, only L. ruminis has been isolated from mammals, and this species may be considered as an autochthonous member of the gastrointestinal microbiota of humans, pigs and cows. Nine L. ruminis strains were investigated here to elucidate the biochemistry and genetics of Lactobacillus motility. Six strains isolated from humans were non-motile while three bovine isolates were motile. A complete set of flagellum biogenesis genes was annotated in the sequenced genomes of two strains, ATCC25644 (human isolate) and ATCC27782 (bovine isolate), but only the latter strain produced flagella. Comparison of the L. ruminis and L. mali DSM20444(T) motility loci showed that their genetic content and gene-order were broadly similar, although the L. mali motility locus was interrupted by an 11.8 Kb region encoding rhamnose utilization genes that is absent from the L. ruminis motility locus. Phylogenetic analysis of 39 motile bacteria indicated that Lactobacillus motility genes were most closely related to those of motile carnobacteria and enterococci. Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644. Flagellin proteins were isolated from L. ruminis ATCC27782 and from three other Lactobacillus species, while recombinant flagellin of aflagellate L. ruminis ATCC25644 was expressed and purified from E. coli. These native and recombinant Lactobacillus flagellins, and also flagellate L. ruminis cells, triggered interleukin-8 production in cultured human intestinal epithelial cells in a manner suppressed by short interfering RNA directed against Toll-Like Receptor 5. This study provides genetic, transcriptomic, phylogenetic and immunological insights into the trait of flagellum-mediated motility in the lactobacilli.


Assuntos
Flagelina/metabolismo , Mediadores da Inflamação/metabolismo , Lactobacillus/metabolismo , Animais , Bovinos , Eletroforese em Gel de Poliacrilamida , Enterócitos/metabolismo , Flagelos/metabolismo , Flagelos/ultraestrutura , Flagelina/genética , Flagelina/isolamento & purificação , Genes Bacterianos/genética , Genômica , Células HT29 , Humanos , Interleucina-8/metabolismo , Lactobacillus/citologia , Lactobacillus/genética , Lactobacillus/ultraestrutura , Camundongos , Anotação de Sequência Molecular , Movimento , Filogenia , Recombinação Genética/genética , Especificidade da Espécie , Receptor 5 Toll-Like/metabolismo
14.
PLoS One ; 7(2): e31113, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363561

RESUMO

Lactobacilli are gram-positive bacteria that are a subdominant element in the human gastrointestinal microbiota, and which are commonly used in the food industry. Some lactobacilli are considered probiotic, and have been associated with health benefits. However, there is very little culture-independent information on how consumed probiotic microorganisms might affect the entire intestinal microbiota. We therefore studied the impact of the administration of Lactobacillus salivarius UCC118, a microorganism well characterized for its probiotic properties, on the composition of the intestinal microbiota in two model animals. UCC118 has anti-infective activity due to production of the bacteriocin Abp118, a broad-spectrum class IIb bacteriocin, which we hypothesized could impact the microbiota. Mice and pigs were administered wild-type (WT) L. salivarius UCC118 cells, or a mutant lacking bacteriocin production. The microbiota composition was determined by pyrosequencing of 16S rRNA gene amplicons from faeces. The data show that L. salivarius UCC118 administration had no significant effect on proportions of major phyla comprising the mouse microbiota, whether the strain was producing bacteriocin or not. However, L. salivarius UCC118 WT administration led to a significant decrease in Spirochaetes levels, the third major phylum in the untreated pig microbiota. In both pigs and mice, L. salivarius UCC118 administration had an effect on Firmicutes genus members. This effect was not observed when the mutant strain was administered, and was thus associated with bacteriocin production. Surprisingly, in both models, L. salivarius UCC118 administration and production of Abp118 had an effect on gram-negative microorganisms, even though Abp118 is normally not active in vitro against this group of microorganisms. Thus L. salivarius UCC118 administration has a significant but subtle impact on mouse and pig microbiota, by a mechanism that seems at least partially bacteriocin-dependent.


Assuntos
Bacteriocinas/farmacologia , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Metagenoma/efeitos dos fármacos , Sus scrofa/microbiologia , Animais , Aderência Bacteriana/efeitos dos fármacos , Bacteriocinas/administração & dosagem , Fezes/microbiologia , Comportamento Alimentar/efeitos dos fármacos , Feminino , Trânsito Gastrointestinal/efeitos dos fármacos , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana/efeitos dos fármacos , Modelos Animais , Mutação/genética , Probióticos/administração & dosagem , Probióticos/farmacologia , Sus scrofa/crescimento & desenvolvimento , Fatores de Tempo , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA