Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 31(4): 587-590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38637662

RESUMO

Solute carriers (SLCs) control the flow of small molecules and ions across biological membranes. Over the last 20 years, the pace of research in SLC biology has accelerated markedly, opening new opportunities to treat metabolic diseases, cancer and neurological disorders. Recently, new families of atypical SLCs, with roles in organelle biology, metabolite signaling and trafficking, have expanded their roles in the cell. This Perspective discusses work leading to current advances and the emerging opportunities to target and modulate SLCs to uncover new biology and treat human disease.


Assuntos
Biologia , Humanos , Membrana Celular
2.
Int J Integr Care ; 24(3): 3, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974206

RESUMO

Introduction: Social prescribing can facilitate the integration of health, social care and community support but has a diverse and confusing terminology that impairs cross-sectoral communication and creates barriers to engagement. Methods: To address this issue a mixed-methods approach that incorporated a scoping review, a group concept mapping study and consultation was employed to identify and classify the terminology associated with social prescribing. The findings were then used to inform the development of a glossary of terms for social prescribing. Results: Many terms are used interchangeably to describe the same specific aspects of social prescribing. Much of the terminology originates from the health and social care literature of England. Discussion: The terminology used in the academic literature may not accurately reflect the terminology used by the social prescribing workforce. The innovative and interactive glossary of terms identifies the terminology associated with social prescribing and provides additional contextual information. The process of developing the dual language glossary presented several considerations and challenges. Conclusion: The glossary of terms will facilitate cross-sector communication and reduce barriers to engagement with social prescribing. It takes an important first step to help clarify and standardise the language associated with social prescribing, for professionals and members of the public alike.

3.
Elife ; 132024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042711

RESUMO

Proton-coupled oligopeptide transporters (POTs) are of great pharmaceutical interest owing to their promiscuous substrate binding site that has been linked to improved oral bioavailability of several classes of drugs. Members of the POT family are conserved across all phylogenetic kingdoms and function by coupling peptide uptake to the proton electrochemical gradient. Cryo-EM structures and alphafold models have recently provided new insights into different conformational states of two mammalian POTs, SLC15A1, and SLC15A2. Nevertheless, these studies leave open important questions regarding the mechanism of proton and substrate coupling, while simultaneously providing a unique opportunity to investigate these processes using molecular dynamics (MD) simulations. Here, we employ extensive unbiased and enhanced-sampling MD to map out the full SLC15A2 conformational cycle and its thermodynamic driving forces. By computing conformational free energy landscapes in different protonation states and in the absence or presence of peptide substrate, we identify a likely sequence of intermediate protonation steps that drive inward-directed alternating access. These simulations identify key differences in the extracellular gate between mammalian and bacterial POTs, which we validate experimentally in cell-based transport assays. Our results from constant-PH MD and absolute binding free energy (ABFE) calculations also establish a mechanistic link between proton binding and peptide recognition, revealing key details underpining secondary active transport in POTs. This study provides a vital step forward in understanding proton-coupled peptide and drug transport in mammals and pave the way to integrate knowledge of solute carrier structural biology with enhanced drug design to target tissue and organ bioavailability.


The cells in our body are sealed by a surrounding membrane that allows them to control which molecules can enter or leave. Desired molecules are often imported via transport proteins that require a source of energy. One way that transporter proteins achieve this is by simultaneously moving positively charged particles called protons across the membrane. Proteins called POTs (short for proton-coupled oligopeptide transporters) use this mechanism to import small peptides and drugsin to the cells of the kidney and small intestine. Sitting in the centre of these transporters is a pocket that binds to the imported peptide which has a gate on either side: an outer gate that opens towards the outside of the cell, and an inner gate that opens towards the cell's interior. The movement of protons from the outer to the inner gate is thought to shift the shape of the transporter from an outwards to an inwards-facing state. However, the molecular details of this energetic coupling are not well understood. To explore this, Lichtinger et al. used computer simulations to pinpoint where protons bind on POTs to trigger the gates to open. The simulations proposed that two sites together make up the outward-facing gate, which opens upon proton binding. Lichtinger et al. then validated these sites experimentally in cultured human cells that produce mutant POTs. After the desired peptide/drug has attached to the binding pocket, the protons then move to two more sites further down the transporter. This triggers the inner gate to open, which ultimately allows the small molecule to move into the cell. These findings represent a significant step towards understanding how POTs transport their cargo. Since POTs can transport a range of drugs from the digestive tract into the body, these results could help researchers design molecules that are better absorbed. This could lead to more orally available medications, making it easier for patients to adhere to their treatment regimen.


Assuntos
Simulação de Dinâmica Molecular , Prótons , Animais , Conformação Proteica , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/química , Mamíferos/metabolismo , Transporte Biológico , Termodinâmica
4.
Res Sq ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38903084

RESUMO

The uptake and elimination of beta-lactam antibiotics in the human body are facilitated by the proton-coupled peptide transporters PepT1 (SLC15A1) and PepT2 (SLC15A2). The mechanism by which SLC15 family transporters recognize and discriminate between different drug classes and dietary peptides remains unclear, hampering efforts to improve antibiotic pharmacokinetics through targeted drug design and delivery. Here, we present cryo-EM structures of the mammalian proton-coupled peptide transporter, PepT2, in complex with the widely used beta-lactam antibiotics cefadroxil, amoxicillin and cloxacillin. Our structures, combined with pharmacophore mapping, molecular dynamics simulations and biochemical assays, establish the mechanism of antibiotic recognition and the important role of protonation in drug binding and transport.

5.
Structure ; 32(7): 866-877.e4, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38626766

RESUMO

Trafficking receptors control protein localization through the recognition of specific signal sequences that specify unique cellular locations. Differences in luminal pH are important for the vectorial trafficking of cargo receptors. The KDEL receptor is responsible for maintaining the integrity of the ER by retrieving luminally localized folding chaperones in a pH-dependent mechanism. Structural studies have revealed the end states of KDEL receptor activation and the mechanism of selective cargo binding. However, precisely how the KDEL receptor responds to changes in luminal pH remains unclear. To explain the mechanism of pH sensing, we combine analysis of X-ray crystal structures of the KDEL receptor at neutral and acidic pH with advanced computational methods and cell-based assays. We show a critical role for ordered water molecules that allows us to infer a direct connection between protonation in different cellular compartments and the consequent changes in the affinity of the receptor for cargo.


Assuntos
Receptores de Peptídeos , Concentração de Íons de Hidrogênio , Humanos , Receptores de Peptídeos/metabolismo , Receptores de Peptídeos/química , Receptores de Peptídeos/genética , Cristalografia por Raios X , Transporte Proteico , Ligação Proteica , Modelos Moleculares , Retículo Endoplasmático/metabolismo , Sítios de Ligação
6.
Nat Commun ; 15(1): 4173, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755204

RESUMO

Potassium channels of the Two-Pore Domain (K2P) subfamily, KCNK1-KCNK18, play crucial roles in controlling the electrical activity of many different cell types and represent attractive therapeutic targets. However, the identification of highly selective small molecule drugs against these channels has been challenging due to the high degree of structural and functional conservation that exists not only between K2P channels, but across the whole K+ channel superfamily. To address the issue of selectivity, here we generate camelid antibody fragments (nanobodies) against the TREK-2 (KCNK10) K2P K+ channel and identify selective binders including several that directly modulate channel activity. X-ray crystallography and CryoEM data of these nanobodies in complex with TREK-2 also reveal insights into their mechanisms of activation and inhibition via binding to the extracellular loops and Cap domain, as well as their suitability for immunodetection. These structures facilitate design of a biparatropic inhibitory nanobody with markedly improved sensitivity. Together, these results provide important insights into TREK channel gating and provide an alternative, more selective approach to modulation of K2P channel activity via their extracellular domains.


Assuntos
Canais de Potássio de Domínios Poros em Tandem , Anticorpos de Domínio Único , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Anticorpos de Domínio Único/metabolismo , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/química , Humanos , Cristalografia por Raios X , Animais , Microscopia Crioeletrônica , Células HEK293 , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA