Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Entropy (Basel) ; 22(10)2020 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-33286895

RESUMO

Recent direct numerical simulations (DNS) and experiments in turbulent channel flow have found intermittent low- and high-drag events in Newtonian fluid flows, at Reτ=uτh/ν between 70 and 100, where uτ, h and ν are the friction velocity, channel half-height and kinematic viscosity, respectively. These intervals of low-drag and high-drag have been termed "hibernating" and "hyperactive", respectively, and in this paper, a further investigation of these intermittent events is conducted using experimental and numerical techniques. For experiments, simultaneous measurements of wall shear stress and velocity are carried out in a channel flow facility using hot-film anemometry (HFA) and laser Doppler velocimetry (LDV), respectively, for Reτ between 70 and 250. For numerical simulations, DNS of a channel flow is performed in an extended domain at Reτ = 70 and 85. These intermittent events are selected by carrying out conditional sampling of the wall shear stress data based on a combined threshold magnitude and time-duration criteria. The use of three different scalings (so-called outer, inner and mixed) for the time-duration criterion for the conditional events is explored. It is found that if the time-duration criterion is kept constant in inner units, the frequency of occurrence of these conditional events remain insensitive to Reynolds number. There exists an exponential distribution of frequency of occurrence of the conditional events with respect to their duration, implying a potentially memoryless process. An explanation for the presence of a spike (or dip) in the ensemble-averaged wall shear stress data before and after the low-drag (or high-drag) events is investigated. During the low-drag events, the conditionally-averaged streamwise velocities get closer to Virk's maximum drag reduction (MDR) asymptote, near the wall, for all Reynolds numbers studied. Reynolds shear stress (RSS) characteristics during these conditional events are investigated for Reτ = 70 and 85. Except very close to the wall, the conditionally-averaged RSS is higher than the time-averaged value during the low-drag events.

2.
Soft Matter ; 15(6): 1444-1456, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30667028

RESUMO

Additive manufacturing (AM) techniques and so-called 2D materials have undergone an explosive growth in the past decade. The former opens multiple possibilities in the manufacturing of multifunctional complex structures, and the latter on a wide range of applications from energy to water purification. Extrusion-based 3D printing, also known as Direct Ink Writing (DIW), robocasting, and often simply 3D printing, provides a unique approach to introduce advanced and high-added-value materials with limited availability into lab-scale manufacturing. On the other hand, 2D colloids of graphene oxide (GO) exhibit a fascinating rheology and can aid the processing of different materials to develop 'printable' formulations. This work provides an in-depth rheological study of GO suspensions with a wide range of behaviours from Newtonian-like to viscoelastic 'printable' soft solids. The combination of extensional and shear rheology reveals the network formation process as GO concentration increases from <0.1 vol% to 3 vol%. Our results also demonstrate that the quantification of 'printability' can be based on three rheology parameters: the stiffness of the network via the storage modulus (G'), the solid-to-liquid transition or flow stress (σf), and the flow transition index, which relates the flow and yield stresses (FTI = σf/σy).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA