Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemphyschem ; 19(9): 1075-1080, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29297203

RESUMO

Metal halide perovskites have demonstrated breakthrough performances as absorber and emitter materials for photovoltaic and display applications respectively. However, despite the low manufacturing cost associated with solution-based processing, the propensity for defect formation with this technique has led to an increasing need for defect passivation. Here, we present an inexpensive and facile method to remedy surface defects through a postdeposition treatment process using branched alkylammonium cation species. The simultaneous realignment of interfacial energy levels upon incorporation of tetraethylammonium bromide onto the surface of CH3 NH3 PbBr3 films contributes favorably toward the enhancement in overall light-emitting diode characteristics, achieving maximum luminance, current efficiency, and external quantum efficiency values of 11 000 cd m-2 , 0.68 cd A-1 , and 0.16 %, respectively.

2.
Adv Mater ; 34(25): e2104661, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34699646

RESUMO

The rapid emergence of organic-inorganic lead halide perovskites for low-cost and high-efficiency photovoltaics promises to impact new photovoltaic concepts. Their high power conversion efficiencies, ability to coat perovskite layers on glass via various scalable deposition techniques, excellent optoelectronic properties, and synthetic versatility for modulating transparency and color allow perovskite solar cells (PSCs) to be an ideal solution for building-integrated photovoltaics (BIPVs), which transforms windows or façades into electric power generators. In this review, the unique features and properties of PSCs for BIPV application are accessed. Device engineering and optical management strategies of active layers, interlayers, and electrodes for semitransparent, bifacial, and colorful PSCs are also discussed. The performance of PSCs under conditions that are relevant for BIPV such as different operational temperature, light intensity, and light incident angle are also reviewed. Recent outdoor stability testing of PSCs in different countries and other demonstration of scalability and deployment of PSCs are also spotlighted. Finally, the current challenges and future opportunities for realizing perovskite-based BIPV are discussed.

3.
Adv Mater ; 32(40): e2003296, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32856340

RESUMO

Realization of reduced ionic (cationic and anionic) defects at the surface and grain boundaries (GBs) of perovskite films is vital to boost the power conversion efficiency of organic-inorganic halide perovskite (OIHP) solar cells. Although numerous strategies have been developed, effective passivation still remains a great challenge due to the complexity and diversity of these defects. Herein, a solid-state interdiffusion process using multi-cation hybrid halide perovskite quantum dots (QDs) is introduced as a strategy to heal the ionic defects at the surface and GBs. It is found that the solid-state interdiffusion process leads to a reduction in OIHP shallow defects. In addition, Cs+ distribution in QDs greatly influences the effectiveness of ionic defect passivation with significant enhancement to all photovoltaic performance characteristics observed on treating the solar cells with Cs0.05 (MA0.17 FA0.83 )0.95 PbBr3 (abbreviated as QDs-Cs5). This enables power conversion efficiency (PCE) exceeding 21% to be achieved with more than 90% of its initial PCE retained on exposure to continuous illumination of more than 550 h.

4.
Nat Commun ; 10(1): 484, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696818

RESUMO

Halide perovskites possess enormous potential for various optoelectronic applications. Presently, a clear understanding of the interplay between the lattice and electronic effects is still elusive. Specifically, the weakly absorbing tail states and dual emission from perovskites are not satisfactorily described by existing theories based on the Urbach tail and reabsorption effect. Herein, through temperature-dependent and time-resolved spectroscopy on metal halide perovskite single crystals with organic or inorganic A-site cations, we confirm the existence of indirect tail states below the direct transition edge to arise from a dynamical Rashba splitting effect, caused by the PbBr6 octahedral thermal polar distortions at elevated temperatures. This dynamic effect is distinct from the static Rashba splitting effect, caused by non-spherical A-site cations or surface induced lattice distortions. Our findings shed fresh perspectives on the electronic-lattice relations paramount for the design and optimization of emergent perovskites, revealing broad implications for light harvesting/photo-detection and light emission/lasing applications.

5.
Nat Commun ; 10(1): 1145, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837476

RESUMO

The original version of this article incorrectly listed the present address of Bo Wu as 'Present address: Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province 510006, China'. This is the author's primary affiliation. This has been corrected in both the PDF and HTML versions of the article.

6.
Adv Mater ; 30(51): e1805454, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30334296

RESUMO

Emulation of brain-like signal processing is the foundation for development of efficient learning circuitry, but few devices offer the tunable conductance range necessary for mimicking spatiotemporal plasticity in biological synapses. An ionic semiconductor which couples electronic transitions with drift-diffusive ionic kinetics would enable energy-efficient analog-like switching of metastable conductance states. Here, ionic-electronic coupling in halide perovskite semiconductors is utilized to create memristive synapses with a dynamic continuous transition of conductance states. Coexistence of carrier injection barriers and ion migration in the perovskite films defines the degree of synaptic plasticity, more notable for the larger organic ammonium and formamidinium cations than the inorganic cesium counterpart. Optimized pulsing schemes facilitates a balanced interplay of short- and long-term plasticity rules like paired-pulse facilitation and spike-time-dependent plasticity, cardinal for learning and computing. Trained as a memory array, halide perovskite synapses demonstrate reconfigurability, learning, forgetting, and fault tolerance analogous to the human brain. Network-level simulations of unsupervised learning of handwritten digit images utilizing experimentally derived device parameters, validates the utility of these memristors for energy-efficient neuromorphic computation, paving way for novel ionotronic neuromorphic architectures with halide perovskites as the active material.

7.
Chem Commun (Camb) ; 53(88): 12004-12007, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29053160

RESUMO

The incorporation of phenylethylammonium bromide (PEABr) into a fully inorganic CsPbBr3 perovskite framework led to the formation of mixed-dimensional perovskites, which enhanced the photoluminescence due to efficient energy funnelling and morphological improvements. With a PEABr : CsPbBr3 ratio of 0.8 : 1, PeLEDs with a current efficiency of 6.16 cd A-1 and an EQE value of 1.97% have been achieved.

8.
ACS Omega ; 2(6): 2757-2764, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457613

RESUMO

Research into perovskite-based light-emitting diodes (PeLEDs) has been rapidly gaining momentum since the initial reports of green-emitting methylammonium lead bromide (CH3NH3PbBr3)-based devices were published. However, issues pertaining to its stability and morphological control still hamper progress toward high performing devices. Solvent engineering, a technique typically employed to modulate film crystallization, offers little opportunity for scale-up due to the tendency for inhomogeneous film growth and low degree of reproducibility. Here, we propose and show a simple gas-facilitated process to deposit a stable, all-inorganic perovskite CsPbBr3 film. The formation of smaller and less percolated grains, which gives rise to enhanced optical properties, highlights the importance of spatial charge confinement in the film. Consequently, the performance of our PeLEDs shows great improvement, with luminance as high as 8218 cd m-2 and turn-on voltage as low as 2.4 V. Concomitantly, the current efficiency and EQE of our device were increased to 0.72 cd A-1 and 0.088%, respectively. High reproducibility in the performance of PeLEDs fabricated using this process opens the path for large-area devices.

9.
Chem Commun (Camb) ; 52(44): 7118-21, 2016 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-27165565

RESUMO

A new protocol for the synthesis of a highly stable (over 2 months under ambient conditions) solution-processed core-shell type structure of mixed methylammonium-octylammonium lead bromide perovskite nanoparticles (5-12 nm), having spherical shape, color tunability in the blue to green spectral region (438-521 nm) and a high photoluminescence quantum yield (PLQY) of up to 92% is described. The color tunability, high PLQY and stability are due to the quantum confinement imparted by the crystal engineering associated with core-shell nanoparticle formation during growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA