RESUMO
BACKGROUND: The long-term immunologic effects of antiretroviral therapy (ART) in children with perinatally-acquired HIV (PHIV) have not been fully elucidated. Here, we investigated how the timing of ART initiation affects the long-term immune profile of children living with PHIV by measuring immunomodulatory plasma cytokines, chemokines, and adenosine deaminases (ADAs). METHODS: 40 PHIV participants initiated ART during infancy. 39 participant samples were available; 30 initiated ART ≤6 months (early-ART treatment); 9 initiated ART >6 months and <2 years (late-ART treatment). We compared plasma cytokine and chemokine concentrations and ADA enzymatic activities between early-ART and late-ART treatment 12.5 years later and measured correlation with clinical covariates. RESULTS: Plasma concentrations of 10 cytokines and chemokines (IFNγ, IL-12p70, IL-13, IL-17A, IL-IRA, IL-5, IL-6, and IL-9 as well as CCL7, CXCL10), ADA1, and ADA total were significantly higher in late-ART compared to early-ART treatment. Furthermore, ADA1 was significantly positively correlated with IFNγ, IL-17A, and IL-12p70. Meanwhile, total ADA was positively correlated with IFNγ, IL-13, IL-17A, IL-1RA, IL-6, and IL-12p70 as well as CCL7. CONCLUSIONS: Elevation of several pro-inflammatory plasma analytes in late-ART despite 12.5 years of virologic suppression compared to early-ART treatment suggests that early treatment dampens the long-term plasma inflammatory profile in PHIV participants. IMPACT: This study examines differences in the plasma cytokine, chemokine, and ADA profiles 12.5 years after treatment between early (≤6months) and late (>6 months and <2 years) antiretroviral therapy (ART) treatment initiation in a cohort of European and UK study participants living with PHIV. Several cytokines and chemokines (e.g., IFNγ, IL-12p70, IL-6, and CXCL10) as well as ADA-1 are elevated in late-ART treatment in comparison to early-ART treatment. Our results suggest that effective ART treatment initiated within 6 months of life in PHIV participants dampens a long-term inflammatory plasma profile as compared to late-ART treatment.
Assuntos
Infecções por HIV , Criança , Gravidez , Feminino , Humanos , Infecções por HIV/tratamento farmacológico , Interleucina-17 , Interleucina-13 , Interleucina-6 , Antirretrovirais/uso terapêutico , Citocinas , QuimiocinasRESUMO
Hydrogen peroxide (H2O2) promotes a range of phenotypes depending on its intracellular concentration and dosing kinetics, including cell death. While this qualitative relationship has been well established, the quantitative and mechanistic aspects of H2O2 signaling are still being elucidated. Mitochondria, a putative source of intracellular H2O2, have recently been demonstrated to be particularly vulnerable to localized H2O2 perturbations, eliciting a dramatic cell death response in comparison to similar cytosolic perturbations. We sought to improve our dynamic and mechanistic understanding of the mitochondrial H2O2 reaction network in HeLa cells by creating a kinetic model of this system and using it to explore basal and perturbed conditions. The model uses the most current quantitative proteomic and kinetic data available to predict reaction rates and steady-state concentrations of H2O2 and its reaction partners within individual mitochondria. Time scales ranging from milliseconds to one hour were simulated. We predict that basal, steady-state mitochondrial H2O2 will be in the low nM range (2-4 nM) and will be inversely dependent on the total pool of peroxiredoxin-3 (Prx3). Neglecting efflux of H2O2 to the cytosol, the mitochondrial reaction network is expected to control perturbations well up to H2O2 generation rates ~50 µM/s (0.25 nmol/mg-protein/s), above which point the Prx3 system would be expected to collapse. Comparison of these results with redox Western blots of Prx3 and Prx2 oxidation states demonstrated reasonable trend agreement at short times (≤ 15 min) for a range of experimentally perturbed H2O2 generation rates. At longer times, substantial efflux of H2O2 from the mitochondria to the cytosol was evidenced by peroxiredoxin-2 (Prx2) oxidation, and Prx3 collapse was not observed. A refined model using Monte Carlo parameter sampling was used to explore rates of H2O2 efflux that could reconcile model predictions of Prx3 oxidation states with the experimental observations.
Assuntos
Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Biologia Computacional , Citosol/química , Citosol/metabolismo , Células HeLa , Humanos , Cinética , Mitocôndrias/química , Neoplasias/química , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologiaRESUMO
Introduction: Dynamic cellular and molecular adaptations in early life significantly impact health and disease. Upon birth, newborns are immediately challenged by their environment, placing urgent demands on the infant immune system. Adenosine deaminases (ADAs) are enzymatic immune modulators present in two isoforms - ADA-1 and ADA-2. Infants exhibit low ADA activity, resulting in high plasma adenosine concentrations and a consequent anti-inflammatory/anti-Th1 bias. While longitudinal studies of plasma ADA have been conducted in infants in The Gambia (GAM), little is known regarding ADA trajectories in other parts of the world. Methods: Herein, we characterized plasma ADA activity in an infant cohort in Papua New Guinea (PNG; n=83) and compared to ontogeny of ADA activity in a larger cohort in GAM (n=646). Heparinized peripheral blood samples were collected at day of life (DOL) 0, DOL7, DOL30, and DOL128. Plasma ADA-1, ADA-2, and total ADA activities were measured by chromogenic assay. Results: Compared to GAM infants, PNG infants had significantly lower ADA-1 (0.9-fold), ADA-2 (0.42-fold), and total ADA (0.84-fold) activities at birth which converged by DOL30. Discussion: Overall, discovery of a distinct baseline and a consistent pattern of increasing plasma ADA activity in early life in two genetically and geographically distinct populations validates and extends previous findings on the robustness of early life immune ontogeny.