Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 22(12): 5327-5338, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34807571

RESUMO

Rice husk is one of the most abundant biomass resources in the world, yet it is not effectively used. This study focuses on the sustainably rice-husk-extracted lignin, nano-lignin (n-Lignin), lignin-capped silver nanoparticles (LCSN), n-Lignin-capped silver nanoparticles (n-LCSN), and lignin-capped silica-silver nanoparticles (LCSSN), and using them for antibacterial activities. The final n-Lignin-based products had a sphere-like structure, of which the size varied between 50 and 80 nm. We found that while n-Lignin and lignin were less effective against Escherichia coli than against Staphylococcus aureus, n-Lignin/lignin-based hybrid materials, i.e., n-LCSN, LCSN, and LCSSN, were better against E. coli than against S. aureus. Interestingly, the antimicrobial behaviors of n-LCSNs could be further improved by decreasing the size of n-Lignin. Considering the facile, sustainable, and eco-friendly method that we have developed here, it is promising to use n-Lignin/lignin-based materials as highly efficient antimicrobials without environmental concerns.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Lignina/química , Lignina/farmacologia , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Dióxido de Silício , Prata/química , Prata/farmacologia , Staphylococcus aureus
2.
ACS Omega ; 9(17): 19182-19192, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708195

RESUMO

Lightweight biobased insulation polyurethane (BPU) composite foams with high fire-resistance efficiency are interested in building effective energy and low environmental impact today. This study focuses on manufacturing lightweight BPU from liquefied bamboo polyols and biomass resources, including rice husk and wood flour. Then, they are combined with three flame retardant (FR) additives, such as aluminum diethyl phosphinate, aluminum trihydroxide, and diammonium phosphate, to improve their fire resistance performance. The physicochemical properties, microstructure, thermal stability, mechanical properties, and flame-retardant properties of the BPU composites are characterized to optimize their compromise properties. The results showed that composites with optimized FRs achieved UL94 V-0 and those with nonoptimized FRs reached UL94 HB. The limiting oxygen index exhibited that the fire resistance of BPU composites could increase up to 21-37% within FR additives. In addition, the thermal stability of BPU composites was significantly improved in a temperature range of 300-700 °C and the compressive strength of the BPU composites was also enhanced with the presence of FRs. The scanning electron microscopy observation showed an influence of FRs on the morphology and cell size of the BPU composites. The bio-PU-derived samples in this study showed significantly low thermal conductivity values, demonstrating their remarkable thermal insulation effectiveness.

3.
Int J Biol Macromol ; 230: 123124, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599386

RESUMO

Antibacterial materials have been developed for a long time but bacteria adapt very quickly and become resistant to these materials. This study focuses on the synthesis of a hybrid material system from lignin and silver/silica nanoparticles (Lig@Ag/SiO2 NPs) which were used against bacteria including Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) and inhibited the growth of the fungal Aspergillus flavus (A. flavus). The results showed that the spherical diameter of Lig@Ag/SiO2 NPs has narrow Gaussian distribution with a range from 15 nm to 40 nm in diameter. Moreover, there was no growth of E. coli in samples containing Lig@Ag/SiO2 NPs during 72-h incubation while colonies of S. aureus were only observed at high concentrations (106 CFU/mL) although both species of bacteria were able to thrive even at low bacterial concentration when they were exposed to Ag/SiO2 or lignin. For fungal resistance results, Lig@Ag/SiO2 NPs not only reduced mycelial growth but also inhibited sporulation in A. flavus, leading to decreasing the spreading of spores into the environment. This result represents a highly effective fungal growth inhibition of Lig@Ag/SiO2 NPs compared to lignin or Ag/SiO2, which could not inhibit the growth of sporulation.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Oryza , Antifúngicos/farmacologia , Staphylococcus aureus , Dióxido de Silício/farmacologia , Lignina/farmacologia , Escherichia coli , Antibacterianos/farmacologia , Bactérias
4.
Sci Rep ; 12(1): 1750, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110606

RESUMO

Imbibition of water and silicone oil in poplar and spruce is investigated at the anatomical level by X-ray tomography observations and at the macroscopic level by imbibition kinetics. Imbibition mechanisms depend on both liquid and species. In poplar, oil penetrates vessels with a small contact angle, consistent with the value measured on solid wood (ca. [Formula: see text]). Surprisingly, no direct penetration of water was observed in vessels. The large contact angle for water blocks the capillary rise at the scars between vessel cells. In spruce, oil and water penetrate primarily in latewood, where bordered pits remain open. Subsequently, water slowly invades the rest of the growth ring, while transversal migration is quasi-absent for oil. These 3D observations were quantified to feed a simple imbibition model that satisfactorily simulates macroscopic imbibition kinetics. A 1D approach is sufficient for oil imbibition while a 2D approach is required for water, revealing dual scale effects.

5.
ACS Omega ; 7(1): 1003-1013, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35036764

RESUMO

The characteristics of aerogel materials such as the low density and large surface area enable them to adsorb large amounts of substances, so they show great potential for application in industrial wastewater treatment. Herein, using a combination of completely environmentally friendly materials such as cellulose nanofibers (CNFs) extracted from the petioles of the nipa palm tree and graphene oxide (GO) fabricated by simple solvent evaporation, a composite aerogel was prepared by a freeze-drying method. The obtained aerogel possessed a light density of 0.0264 g/cm3 and a porosity of more than 98.2%. It was able to withstand a weight as much as 2500 times with the maximum force (1479.5 N) to break up 0.2 g of an aerogel by compression strength testing and was stable in the aquatic environment, enabling it to be reused five times with an adsorption capacity over 90%. The CNF/GO aerogel can recover higher than 85% after 30 consecutive compression recovery cycles, which is convenient for the reusability of this material in wastewater treatments. The obtained aerogel also showed a good interaction between the component phases, a high thermal stability, a 3D network structure combined with thin walls and pores with a large specific surface area. In addition, the aerogel also exhibited a fast adsorption rate for methylene blue (MB) adsorption, a type of waste from the textile industry that pollutes water sources, and it can adsorb more than 99% MB in water in less than 20 min. The excellent adsorption of MB onto the CNF/GO aerogel was driven by electrostatic interactions, which agreed with the pseudo-second-order kinetic model with a correlation coefficient R 2 = 0.9978. The initial results show that the CNF/GO aerogel is a highly durable "green" light material that might be applied in the treatment of domestic organic waste water and is completely recoverable and reusable.

6.
Int J Biol Macromol ; 221: 16-24, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36067845

RESUMO

In the context of novel environmental and energy regulations in construction (RE2020), biocomposites derived from bamboo fibers, bamboo powders, and biodegradable poly(lactic)acid polymer, all of which are renewable resources, have been investigated to meet the criteria of the novel regulations. In this work, the biocomposites were manufactured by twin-screw internal mixing at 170 °C for 5 min with a rotation speed of 60 rpm. The composites sheets were then shaped on a hydraulic press at 185 °C. Pore characterization including pore volume fraction, 3D-pore structure and morphology, and pore distribution of these materials were investigated using X-ray tomography combined with image processing (Avizo). The results show that when the bamboo fibers content is increased, an augmentation in the pore volume fraction and the number of large-volume pores could be observed. In turn, the bamboo powder-containing sheet had a significant increase in pore volume fraction, while a higher quantity of smaller pores, with uniform size, could be observed. The water absorption capacity of these composite increases with the increase of the amount of pore distribution, pore connection, and pore volume fraction. In addition, the orientation of the fibers in 3D observation, flexural mechanical properties, and thermal stability of the biocomposites are also reported in this study.

7.
Chemosphere ; 280: 130802, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33975244

RESUMO

The aim of this paper is to synthesize montmorillonite/TiO2-nanoparticles (MMT/TiO2 and montmorillonite/TiO2-nanotubes (MMT/TiO2-NTs) photocatalysts through a simple wet agitation method based on TiO2 nanoparticles and MMT. They are likely to accumulate the effect of adsorption and photodegradation. Then, the photocatalysts are applied to degrade the rhodamine B in dye effluents. The structural characterizations of photocatalysts are investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and energy-dispersive X-ray spectroscopy (EDX). The photocatalytic activities and effectiveness of photocatalysts are evaluated through rhodamine B degradation at different concentrations under dark and UV-C irradiation conditions. The results show that the synthesized TiO2-NTs have an average tube diameter of 5 nm and a tube length at least about 110 nm, which are intercalated into MMT sheets in MMT/TiO2-NTs photocatalyst. Meanwhile, TiO2 nanoparticles are immobilized on the surface of MMT sheets in the MMT/TiO2 photocatalyst. The photocatalytic effectiveness of rhodamine B degradation of TiO2-NTs shows a significantly enhance compared to that of TiO2 nanoparticles. However, photocatalytic performance of MMT/TiO2-NTs is lower than that of MMT/TiO2. The degradation effectiveness of MMT/TiO2 photocatalyst reaches to 100% for 3 ppm and 90% at 10 ppm of rhodamine B, while these values are 97.5% and 85.5%, respectively, recorded for MMT/TiO2-NTs.


Assuntos
Nanotubos , Catálise , Rodaminas , Titânio
8.
Materials (Basel) ; 13(6)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210134

RESUMO

This study aims to produce novel composite artificial marble materials by bulk molding compound processes, and improve their thermal and mechanical properties. We employed stearic acid as an efficient surface modifying agent for CaCO3 particles, and for the first time, a pretreated, recycled, polyethylene terephthalate (PET) fibers mat is used to reinforce the artificial marble materials. The innovative aspects of the study are the surface treatment of CaCO3 particles by stearic acid. Stearic acid forms a monolayer shell, coating the CaCO3 particles, which enhances the compatibility between the CaCO3 particles and the matrix of the composite. The morphology of the composites, observed by scanning electron microscopy, revealed that the CaCO3 phase was homogeneously dispersed in the epoxy matrix under the support of stearic acid. A single layer of a recycled PET fibers mat was pretreated and designed in the core of the composite. As expected, these results indicated that the fibers could enhance flexural properties, and impact strength along with thermal stability for the composites. This combination of a pretreated, recycled, PET fibers mat and epoxy/CaCO3-stearic acid could produce novel artificial marble materials for construction applications able to meet environmental requirements.

10.
Mater Sci Eng C Mater Biol Appl ; 90: 38-45, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29853104

RESUMO

Herein, we successfully developed a novel three dimensional (3D) opened networks based on nitrogen doped graphene­carbon nanotubes attaching with gold nanoparticles (N-GR-CNTs/AuNPs) to apply for non-enzymatic glucose determination. It was demonstrated that the N-GR-CNTs/AuNPs modified electrode exhibited good behavior for glucose detection with a long linear range of 2 µM to 19.6 mM, high sensitivity of 0.9824 µA·mM-1·cm-2, low detection limit of 500 nM, and negligible interference effect. The high performance of the N-GR-CNTs/AuNPs based sensor was assumed due to the outstanding catalytic activity of AuNPs well dispersing on N-GR-CNTs networks, which exhibited as a perfect supporting scaffold due to the enhanced electrical conductivity and large surface area. The obtained results indicated that the N-GR-CNTs/AuNPs hybrid is highly promising for sensitive and selective detection of glucose in sensor application.


Assuntos
Técnicas Biossensoriais/métodos , Glucose/análise , Ouro/química , Grafite/química , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA