Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mov Disord ; 32(12): 1687-1693, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28843017

RESUMO

BACKGROUND: Abnormal striatal dopamine transmission has been hypothesized to cause restless legs syndrome. Dopaminergic drugs are commonly used to treat restless legs syndrome. However, they cause adverse effects with long-term use. An animal model would allow the systematic testing of potential therapeutic drugs. A high prevalence of restless legs syndrome has been reported in iron-deficient anemic patients. We hypothesized that the iron-deficient animal would exhibit signs similar to those in restless legs syndrome patients. METHODS: After baseline polysomnographic recordings, iron-deficient rats received pramipexole injection. Then, iron-deficient rats were fed a standard rodent diet, and polysomnographic recording were performed for 2 days each week for 4 weeks. RESULTS: Iron-deficient rats have low hematocrit levels and show signs of restless legs syndrome: sleep fragmentation and periodic leg movements in wake and in slow-wave sleep. Iron-deficient rats had a positive response to pramipexole treatment. After the iron-deficient rats were fed the standard rodent diet, hematocrit returned to normal levels, and sleep quality improved, with increased average duration of wake and slow-wave sleep episodes. Periodic leg movements decreased during both waking and sleep. Hematocrit levels positively correlated with the average duration of episodes in wake and in slow-wave sleep and negatively correlated with periodic leg movements in wake and in sleep. Western blot analysis showed that striatal dopamine transporter levels were higher in iron-deficient rats. CONCLUSIONS: The iron-deficient rat is a useful animal model of iron-deficient anemic restless legs syndrome. © 2017 International Parkinson and Movement Disorder Society.


Assuntos
Hipercinese/etiologia , Distúrbios do Metabolismo do Ferro/complicações , Síndrome das Pernas Inquietas/etiologia , Análise de Variância , Animais , Antiparkinsonianos/uso terapêutico , Benzotiazóis/uso terapêutico , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Relação Dose-Resposta a Droga , Eletroencefalografia , Eletromiografia , Hematócrito/métodos , Hipercinese/tratamento farmacológico , Ferro/uso terapêutico , Polissonografia , Pramipexol , Ratos , Ratos Sprague-Dawley , Síndrome das Pernas Inquietas/tratamento farmacológico
3.
Sleep ; 45(7)2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35537196

RESUMO

STUDY OBJECTIVES: Brain iron deficiency has been reported to be associated with the restless legs syndrome (RLS). However, 30%-50% of RLS patients do not respond to iron therapy, indicating that mechanisms other than brain iron deficiency may also participate in this disease. The striatum is known to be involved in the modulation of motor activity. We speculated that dysfunction of the striatum may induce RLS. METHODS: Two groups, wild-type (WT) and iron-deficient (ID) rats were used. Each group was divided into two subgroups, control and N-methyl-d-aspartate striatal-lesioned. After baseline recording, striatal-lesioned wild-type (WT-STL) and striatal-lesioned iron-deficient (ID-STL) rats were given pramipexole and thioperamide injections. Iron-deficient and ID-STL rats were then given a standard rodent diet for 4 weeks, and their sleep and motor activity were recorded. RESULTS: WT-STL rats showed periodic leg movements (PLM) in wake, an increase in PLM in slow wave sleep (SWS), a decrease in rapid-eye-movement sleep, and a decrease in the daily average duration of episodes in SWS. The sleep-wake pattern and motor activity did not differ between ID and ID-STL rats. Thioperamide or pramipexole injection decreased PLM in sleep and in wake in WT-STL rats and ID-STL rats. Unlike ID rats, whose motor hyperactivity can be reversed by iron replacement, PLM in wake and in sleep in ID-STL rats were not fully corrected by iron treatment. CONCLUSIONS: Lesions of the striatum generate RLS-like activity in rats. Dysfunction of the striatum may be responsible for failure to respond to iron treatment in some human RLS patients.


Assuntos
Deficiências de Ferro , Síndrome das Pernas Inquietas , Animais , Ferro , Polissonografia , Pramipexol , Ratos , Síndrome das Pernas Inquietas/tratamento farmacológico
4.
Sleep ; 44(1)2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-32808987

RESUMO

STUDY OBJECTIVES: The substantia nigra pars reticulata (SNR) is a major output nucleus of the basal ganglia. Animal studies have shown that lesions of the SNR cause hyposomnia and motor hyperactivity, indicating that the SNR may play a role in the control of sleep and motor activity. METHODS: Eight 8- to 10-week-old adult male Sprague-Dawley rats were used. After 3 days of baseline polysomnographic recording, dialysates were collected from the lateral SNR across natural sleep-wake states. Muscimol and bicuculline were microinfused into the lateral SNR. RESULTS: We found that GABA release in the lateral SNR is negatively correlated with slow wave sleep (SWS; R = -0.266, p < 0.01, n = 240) and positively correlated with waking (R = 0.265, p < 0.01, n = 240) in rats. Microinfusion of muscimol into the lateral SNR decreased sleep time and sleep quality, as well as eliciting motor hyperactivity in wake and increased periodic leg movement in SWS, while bicuculline infused into the lateral SNR increased sleep and decreased motor activity in SWS in rats. Muscimol infusion skewed the distribution of inter-movement intervals, with most between 10 and 20 s, while a flat distribution of intervals between 10 and 90 s was seen in baseline conditions. CONCLUSIONS: Activation of the lateral SNR is important for inducing sleep and inhibiting motor activity prior to and during sleep, and thus to the maintenance of sleep. Abnormal function of the lateral SNR may cause hyposomnia and motor hyperactivity in quiet wake and in sleep.


Assuntos
Parte Reticular da Substância Negra , Substância Negra , Animais , Antagonistas GABAérgicos , Masculino , Atividade Motora , Ratos , Ratos Sprague-Dawley , Sono , Ácido gama-Aminobutírico
5.
Sleep ; 43(2)2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31671173

RESUMO

STUDY OBJECTIVES: Restless legs syndrome (RLS) has been hypothesized to be generated by abnormal striatal dopamine transmission. Dopaminergic drugs are effective for the treatment of RLS. However, long-term use of dopaminergic drugs causes adverse effects. We used iron-deficient (ID) and iron-replacement (IR) rats to address the neuropathology of RLS and to determine if a histamine H3 receptor (H3R) antagonist might be a useful treatment. Histamine H3R antagonists have been shown to decrease motor activity. METHODS: Control and ID rats were surgically implanted with electrodes for polysomnographic recording. After 3 days of baseline polysomnographic recordings, rats were systemically injected with the H3R agonist, α-methylhistamine, and antagonist, thioperamide. Recordings were continued after drug injection. Striatal H3R levels from control, ID, and IR rats were determined by western blots. Blood from control, ID, and IR rats was collected for the measurement of hematocrit levels. RESULTS: α-Methylhistamine and thioperamide increased and decreased motor activity, respectively, in control rats. In ID rats, α-methylhistamine had no effect on motor activity, whereas thioperamide decreased periodic leg movement (PLM) in sleep. Sleep-wake states were not significantly altered under any conditions. Striatal H3R levels were highest in ID rats, moderate to low in IR rats, and lowest in control rats. Striatal H3R levels were also found to positively and negatively correlate with PLM in sleep and hematocrit levels, respectively. CONCLUSIONS: A striatal histamine mechanism may be involved in ID anemia-induced RLS. Histamine H3R antagonists may be useful for the treatment of RLS.


Assuntos
Síndrome das Pernas Inquietas , Animais , Corpo Estriado , Dopamina , Histamina , Ferro , Ratos , Síndrome das Pernas Inquietas/induzido quimicamente , Síndrome das Pernas Inquietas/tratamento farmacológico
6.
Sleep Med ; 14(8): 719-28, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23058690

RESUMO

OBJECTIVE: An abnormality in auditory evoked responses localised to the inferior colliculus (IC) has been reported in rapid eye movement (REM) sleep behaviour disorder (RBD) patients. The external cortex of the inferior colliculus (ICX) has been demonstrated not only to be involved in auditory processing, but also to participate in the modulation of motor activity. METHODS: Rats were surgically implanted with electrodes for electroencephalography (EEG) and electromyography (EMG) recording and guide cannulae aimed at the ICX for drug infusions. Drug infusions were conducted after the animals recovered from surgery. Polysomnographic recordings with video were analysed to detect normal and abnormal sleep states. RESULTS: Baclofen, a gamma-aminobutyric acid B (GABAB) receptor agonist, infused into the ICX increased phasic motor activity in slow-wave sleep (SWS) and REM sleep and tonic muscle activity in REM sleep; it also elicited RBD-like activity during the infusion and post-infusion period. In contrast, saclofen, a GABAB receptor antagonist, did not produce significant changes in motor activities in sleep. Baclofen infusions in ICX also significantly increased REM sleep during the post-infusion period, while saclofen infusions did not change the amount of any sleep-waking states. CONCLUSIONS: This study suggests that GABAB receptor mechanisms in the ICX may be implicated in the pathology of RBD.


Assuntos
Baclofeno/análogos & derivados , Baclofeno/farmacologia , Potenciais Evocados Auditivos/fisiologia , Transtorno do Comportamento do Sono REM , Sono REM/efeitos dos fármacos , Sono REM/fisiologia , Animais , Tronco Encefálico/fisiologia , Modelos Animais de Doenças , Eletroencefalografia/efeitos dos fármacos , Potenciais Evocados Auditivos/efeitos dos fármacos , Antagonistas GABAérgicos/farmacologia , Agonistas dos Receptores de GABA-B/farmacologia , Colículos Inferiores/fisiologia , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Polissonografia/efeitos dos fármacos , Transtorno do Comportamento do Sono REM/tratamento farmacológico , Transtorno do Comportamento do Sono REM/patologia , Transtorno do Comportamento do Sono REM/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptores de GABA-B/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA