Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(28): e2301493, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37559172

RESUMO

The metal-semiconductor heterojunction is imperative for the realization of electrically driven nanolasers for chip-level platforms. Progress in developing such nanolasers has hitherto rarely been realized, however, because of their complexity in heterojunction fabrication and the need to use noble metals that are incompatible with microelectronic manufacturing. Most plasmonic nanolasers lase either above a high threshold (101 -103 MW cm-2 ) or at a cryogenic temperature, and lasing is possible only after they are removed from the substrate to avoid the large ohmic loss and the low modal reflectivity, making monolithic fabrication impossible. Here, for the first time, record-low-threshold, room-temperature ultraviolet (UV) lasing of plasmon-coupled core-shell nanowires that are directly grown on silicon is demonstrated. The naturally formed core-shell metal-semiconductor heterostructure of the nanowires leads to a 100-fold improvement in growth density over previous results. This unprecedentedly high nanowire density creates intense plasmonic resonance, which is outcoupled to the resonant Fabry-Pérot microcavity. By boosting the emission strength by a factor of 100, the hybrid photonic-plasmonic system successfully facilitates a record-low laser threshold of 12 kW cm-2 with a spontaneous emission coupling factor as high as ≈0.32 in the 340-360 nm range. Such architecture is simple and cost-competitive for future UV sources in silicon integration.

2.
Adv Healthc Mater ; 7(11): e1701381, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29663698

RESUMO

Dissolving microneedles (DMNs) have been widely studied in medical applications due to their pain-free administration, superior efficiency, and safe drug delivery. In skin vaccination, preserving the activity of the encapsulated antigen is an important consideration, as antigen activity is lost during DMN fabrication because of various stress factors. These stress factors vary between fabrication methods and each method affects the antigen's activity to different degrees. In this study, the activity of encapsulated antigens delivered by DMNs is compared between two recently developed DMN fabrication methods; droplet-born air blowing (DAB) and centrifugal lithography (CL) for a model scrub typhus vaccine antigen, ScaA. Although the in vitro analysis of ScaA-loaded DMNs (ScaA-DMNs) does not show any differences in physical properties depending on the fabrication methods, the immunogenicity of the CL-produced ScaA-DMN is significantly higher based on cytokine measurement and humoral immunity. DAB and CL differ in their solidification conditions, suggesting that solidification factors critically affect the encapsulated antigen's activity. ScaA-DMNs may also be stably stored for 4 weeks at room temperature. In conclusion, CL is a superior DMN fabrication method compared with DAB, and this study proves that DMN is feasible and practical for skin vaccination.


Assuntos
Antígenos de Bactérias/farmacologia , Agulhas , Vacinas Antirrickéttsia/farmacologia , Pele/imunologia , Vacinação/instrumentação , Vacinação/métodos , Animais , Antígenos de Bactérias/imunologia , Injeções Intradérmicas , Camundongos , Vacinas Antirrickéttsia/imunologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA