Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Blood ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968151

RESUMO

We report on the antileukemic activity of homoharringtonine (HHT) in T-ALL. We showed that HHT inhibited NOTCH/MYC pathway and induced a significantly longer survival in T-ALL mouse and patient-derived xenograft models, therefore supporting HHT as a promising agent for T-ALL.

2.
Proc Natl Acad Sci U S A ; 119(16): e2112482119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412895

RESUMO

MiR-126 and miR-155 are key microRNAs (miRNAs) that regulate, respectively, hematopoietic cell quiescence and proliferation. Herein we showed that in acute myeloid leukemia (AML), the biogenesis of these two miRNAs is interconnected through a network of regulatory loops driven by the FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD). In fact, FLT3-ITD induces the expression of miR-155 through a noncanonical mechanism of miRNA biogenesis that implicates cytoplasmic Drosha ribonuclease III (DROSHA). In turn, miR-155 down-regulates SH2-containing inositol phosphatase 1 (SHIP1), thereby increasing phosphor-protein kinase B (AKT) that in turn serine-phosphorylates, stabilizes, and activates Sprouty related EVH1 domain containing 1 (SPRED1). Activated SPRED1 inhibits the RAN/XPO5 complex and blocks the nucleus-to-cytoplasm transport of pre-miR-126, which cannot then complete the last steps of biogenesis. The net result is aberrantly low levels of mature miR-126 that allow quiescent leukemia blasts to be recruited into the cell cycle and proliferate. Thus, miR-126 down-regulation in proliferating AML blasts is downstream of FLT3-ITD­dependent miR-155 expression that initiates a complex circuit of concatenated regulatory feedback (i.e., miR-126/SPRED1, miR-155/human dead-box protein 3 [DDX3X]) and feed-forward (i.e., miR-155/SHIP1/AKT/miR-126) regulatory loops that eventually converge into an output signal for leukemic growth.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Tirosina Quinase 3 Semelhante a fms , RNA Helicases DEAD-box/metabolismo , Regulação para Baixo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , MicroRNAs/metabolismo , Mutação , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
3.
Blood ; 139(26): 3752-3770, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35439288

RESUMO

Differentiation blockade is a hallmark of acute myeloid leukemia (AML). A strategy to overcome such a blockade is a promising approach against the disease. The lack of understanding of the underlying mechanisms hampers development of such strategies. Dysregulated ribonucleotide reductase (RNR) is considered a druggable target in proliferative cancers susceptible to deoxynucleoside triphosphate (dNTP) depletion. Herein, we report an unanticipated discovery that hyperactivating RNR enables differentiation and decreases leukemia cell growth. We integrate pharmacogenomics and metabolomics analyses to identify that pharmacologically (eg, nelarabine) or genetically upregulating RNR subunit M2 (RRM2) creates a dNTP pool imbalance and overcomes differentiation arrest. Moreover, R-loop-mediated DNA replication stress signaling is responsible for RRM2 activation by nelarabine treatment. Further aggravating dNTP imbalance by depleting the dNTP hydrolase SAM domain and HD domain-containing protein 1 (SAMHD1) enhances ablation of leukemia stem cells by RRM2 hyperactivation. Mechanistically, excessive activation of extracellular signal-regulated kinase (ERK) signaling downstream of the imbalance contributes to cellular outcomes of RNR hyperactivation. A CRISPR screen identifies a synthetic lethal interaction between loss of DUSP6, an ERK-negative regulator, and nelarabine treatment. These data demonstrate that dNTP homeostasis governs leukemia maintenance, and a combination of DUSP inhibition and nelarabine represents a therapeutic strategy.


Assuntos
Leucemia Mieloide Aguda , Ribonucleotídeo Redutases , Replicação do DNA , Homeostase , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Polifosfatos , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo
4.
Int J Mol Sci ; 23(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35743010

RESUMO

Venetoclax (VEN) in combination with hypomethylating agents induces disease remission in patients with de novo AML, however, most patients eventually relapse. AML relapse is attributed to the persistence of drug-resistant leukemia stem cells (LSCs). LSCs need to maintain low intracellular levels of reactive oxygen species (ROS). Arsenic trioxide (ATO) induces apoptosis via upregulation of ROS-induced stress to DNA-repair mechanisms. Elevated ROS levels can trigger the Nrf2 antioxidant pathway to counteract the effects of high ROS levels. We hypothesized that ATO and VEN synergize in targeting LSCs through ROS induction by ATO and the known inhibitory effect of VEN on the Nrf2 antioxidant pathway. Using cell fractionation, immunoprecipitation, RNA-knockdown, and fluorescence assays we found that ATO activated nuclear translocation of Nrf2 and increased transcription of antioxidant enzymes, thereby attenuating the induction of ROS by ATO. VEN disrupted ATO-induced Nrf2 translocation and augmented ATO-induced ROS, thus enhancing apoptosis in LSCs. Using metabolic assays and electron microscopy, we found that the ATO+VEN combination decreased mitochondrial membrane potential, mitochondria size, fatty acid oxidation and oxidative phosphorylation, all of which enhanced apoptosis of LSCs derived from both VEN-sensitive and VEN-resistant AML primary cells. Our results indicate that ATO and VEN cooperate in inducing apoptosis of LSCs through potentiation of ROS induction, suggesting ATO+VEN is a promising regimen for treatment of VEN-sensitive and -resistant AML.


Assuntos
Antineoplásicos , Arsenicais , Leucemia Mieloide Aguda , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/farmacologia , Apoptose , Trióxido de Arsênio/farmacologia , Trióxido de Arsênio/uso terapêutico , Arsenicais/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Óxidos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Recidiva , Sulfonamidas
5.
J Cell Physiol ; 235(10): 7567-7579, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32159236

RESUMO

Transcription initiation factor 90 (TIF-90), an alternatively spliced variant of TIF-IA, differs by a 90 base pair deletion of exon 6. TIF-90 has been shown to regulate ribosomal RNA (rRNA) synthesis by interacting with polymerase I (Pol I) during the initiation of ribosomal DNA (rDNA) transcription in the nucleolus. Recently, we showed that TIF-90-mediated rRNA synthesis can play an important role in driving tumorigenesis in human colon cancer cells. Here we show that TIF-90 binds GTP at threonine 310, and that GTP binding is required for TIF-90-enhanced rRNA synthesis. Overexpression of activated AKT induces TIF-90 T310, but not a GTP-binding site (TIF-90 T310N) mutant, to translocate into the nucleolus and increase rRNA synthesis. Complementing this result, treatment with mycophenolic acid (MPA), an inhibitor of GTP production, dissociates TIF-90 from Pol I and hence abolishes AKT-increased rRNA synthesis by way of TIF-90 activation. Thus, TIF-90 requires bound GTP to fulfill its function as an enhancer of rRNA synthesis. Both TIF variants are highly expressed in colon cancer cells, and depletion of TIF-IA expression in these cells results in significant sensitivity to MPA-inhibited rRNA synthesis and reduced cell proliferation. Finally, a combination of MPA and AZD8055 (an inhibitor of both AKT and mTOR) synergistically inhibits rRNA synthesis, in vivo tumor growth, and other oncogenic activities of primary human colon cancer cells, suggesting a potential avenue for the development of therapeutic treatments by targeting the regulation of rRNA synthesis by TIF proteins.


Assuntos
Carcinogênese/genética , Neoplasias do Colo/genética , Guanosina Trifosfato/genética , RNA Ribossômico/genética , Ribossomos/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , DNA Ribossômico/genética , Células HCT116 , Humanos , RNA Polimerase I/genética , Transdução de Sinais/genética
6.
J Cell Physiol ; 234(10): 17612-17621, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30793766

RESUMO

The ErbB3-binding protein 1 (Ebp1) has been reported as either an oncogenic regulator or a tumor suppressor in a variety of cancers. Here, we show that Ebp1 p48, a predominant expression isoform, is highly expressed in the majority of human colon tumor cells compared with normal adjacent tissues and its expression is required for the oncogenic activities of these cells. Depletion of Ebp1 expression in primary colon cancer cells inhibits cell proliferation, colony forming, and invasion in vitro as well as tumor formation in vivo and enhances cell sensitivity to irradiation. We further demonstrated that Ebp1 interacts with TIF-90, a splice variant of transcription initiation factor IA (TIF-IA) of the RNA polymerase I complex, allowing for regulation of ribosomal RNA (rRNA) synthesis and oncogenesis in human colon cancer cells. Moreover, Ebp1 expression is essential for Akt protected TIF-90 stability by preventing TIF-90's ubiquitination by Mdm2 and hence, its proteasomal degradation. The results of the present study support a mechanism of underlying oncogenic activities by means of Ebp1 through regulation of TIF-90-mediated rRNA synthesis and suggest the potential therapeutic treatment of colon cancer by targeting Ebp1 and its signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias do Colo/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Ribossômico/biossíntese , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Modelos Biológicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Ribossômico/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Células Tumorais Cultivadas , Ubiquitinação
7.
J Cell Physiol ; 234(8): 14040-14049, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30623427

RESUMO

Induction of reactive oxygen species (ROS), an important process for the cytotoxicity of various acute myeloid leukemia (AML) therapies including hypomethylating agents (HMAs), concurrently activates the NF-E2-related factor 2 (Nrf2) antioxidant response pathway which in turn results in induction of antioxidant enzymes that neutralize ROS. In this study, we demonstrated that Nrf2 inhibition is an additional mechanism responsible for the marked antileukemic activity in AML seen with the combination of HMAs and venetoclax (ABT-199). HMA and venetoclax combined treatment augmented mitochondrial ROS induction and apoptosis compared with treatment HMA alone. Treatment of AML cell lines as well as primary AML cells with venetoclax disrupted HMA decitabine-increased nuclear translocation of Nrf2 and induction of downstream antioxidant enzymes including heme oxygenase-1 and NADP-quinone oxidoreductase-1. Venetoclax treatment also leads to dissociation of B-cell lymphoma 2 from the Nrf2/Keap-1 complex and targets Nrf2 to ubiquitination and proteasomal degradation. Thus, our results here demonstrated an undiscovered mechanism underlying synergistic effect of decitabine and venetoclax in AML cells, elucidating for impressive results in antileukemic activity against AML in preclinical and early clinical studies by combined treatment of these drugs.


Assuntos
Decitabina/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Fator 2 Relacionado a NF-E2/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Elementos de Resposta Antioxidante/genética , Apoptose/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , NAD(P)H Desidrogenase (Quinona)/genética , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Sulfonamidas/farmacologia , Ubiquitinação
8.
J Cell Physiol ; 234(9): 16295-16303, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30770553

RESUMO

Nucleoside analogs represent the backbone of several distinct chemotherapy regimens for acute myeloid leukemia (AML) and combination with tyrosine kinase inhibitors has improved survival of AML patients, including those harboring the poor-risk FLT3-ITD mutation. Although these compounds are effective in killing proliferating blasts, they lack activity against quiescent leukemia stem cells (LSCs), which contributes to initial treatment refractoriness or subsequent disease relapse. The reagent 8-chloro-adenosine (8-Cl-Ado) is a ribose-containing, RNA-directed nucleoside analog that is incorporated into newly transcribed RNA rather than in DNA, causing inhibition of RNA transcription. In this report, we demonstrate antileukemic activities of 8-Cl-Ado in vitro and in vivo and provide mechanistic insight into the mode of action of 8-Cl-Ado in AML. 8-Cl-Ado markedly induced apoptosis in LSC, with negligible effects on normal stem cells. 8-Cl-Ado was particularly effective against AML cell lines and primary AML blast cells harboring the FLT3-ITD mutation. FLT3-ITD is associated with high expression of miR-155. Furthermore, we demonstrate that 8-Cl-Ado inhibits miR-155 expression levels accompanied by induction of DNA-damage and suppression of cell proliferation, through regulation of miR-155/ErbB3 binding protein 1(Ebp1)/p53/PCNA signaling. Finally, we determined that combined treatment of NSG mice engrafted with FLT3-ITD + MV4-11 AML cells with 8-Cl-Ado and the FLT3 inhibitor AC220 (quizartinib) synergistically enhanced survival, compared with that of mice treated with the individual drugs, suggesting a potentially effective approach for FLT3-ITD AML patients.

9.
J Cell Physiol ; 233(12): 9110-9120, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30076717

RESUMO

ErbB3, a member of the epidermal growth factor receptor family, reportedly plays an essential role in the regulation of cancer progression and therapeutic resistance. Numerous studies have indicated that ErbB3 binding protein 1 (Ebp1), a binding partner for ErbB3, plays an important regulatory role in the expression and function of ErbB3, but there is no agreement as to whether Ebp1 also has an ErbB3-independent function in cancer and how it might contribute to tumorigenesis. In this review, we will discuss the different functions of the two Ebp1 isoforms, p48 and p42, that may be responsible for the potentially dual role of Ebp1 in cancer growth.


Assuntos
Proliferação de Células/genética , Neoplasias/genética , Isoformas de Proteínas/genética , Humanos , Queratina-20/genética , Neoplasias/patologia , Ligação Proteica , Proteínas de Ligação a RNA/genética , Receptor ErbB-3/genética
10.
Blood ; 125(16): 2519-29, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25691158

RESUMO

Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil, an effective immunosuppressive drug. Both MPA and mycophenolate mofetil are highly specific inhibitors of guanine nucleotide synthesis and of T-cell activation. However, the mechanism by which guanine nucleotide depletion suppresses T-cell activation is unknown. Depletion of GTP inhibits ribosomal RNA synthesis in T cells by inhibiting transcription initiation factor I (TIF-IA), a GTP-binding protein that recruits RNA polymerase I to the ribosomal DNA promoter. TIF-IA-GTP binds the ErbB3-binding protein 1, and together they enhance the transcription of proliferating cell nuclear antigen (PCNA). GTP binding by TIF-IA and ErbB3-binding protein 1 phosphorylation by protein kinase C δ are both required for optimal PCNA expression. The protein kinase C inhibitor sotrastaurin markedly potentiates the inhibition of ribosomal RNA synthesis, PCNA expression, and T-cell activation induced by MPA, suggesting that the combination of the two agents are more highly effective than either alone in inducing immunosuppression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Guanosina Trifosfato/metabolismo , RNA Ribossômico/biossíntese , Proteínas de Ligação a RNA/metabolismo , Linfócitos T/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , DNA Ribossômico/genética , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Células Jurkat , Queratina-20/genética , Queratina-20/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Mutação , Ácido Micofenólico/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Proteína Quinase C-delta/antagonistas & inibidores , Proteína Quinase C-delta/metabolismo , Pirróis/farmacologia , Quinazolinas/farmacologia , Interferência de RNA , RNA Polimerase I/metabolismo , RNA Ribossômico/genética , Proteínas de Ligação a RNA/genética , Linfócitos T/efeitos dos fármacos
11.
Gut ; 65(7): 1077-86, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-25897018

RESUMO

OBJECTIVE: Human oesophageal stem cell research is hampered by the lack of an optimal assay system to study self-renewal and differentiation. We aimed to identify and characterise human and mouse oesophageal stem/progenitor cells by establishing 3-dimensional organotypic sphere culture systems for both species. DESIGN: Primary oesophageal epithelial cells were freshly isolated and fluorescence-activated cell sorting (FACS)-sorted from human and mouse oesophagus and 3-dimensional organotypic sphere culture systems were developed. The self-renewing potential and differentiation status of novel subpopulations were assessed by sphere-forming ability, cell cycle analysis, immunostaining, qPCR and RNA-Seq. RESULTS: Primary human and mouse oesophageal epithelial cells clonally formed esophagospheres consisting of stratified squamous epithelium. Sphere-forming cells could self-renew and form esophagospheres for over 43 passages in vitro and generated stratified squamous epithelium when transplanted under the kidney capsule of immunodeficient mice. Sphere-forming cells were 10-15-fold enriched among human CD49f(hi)CD24(low) cells and murine CD49f(+)CD24(low)CD71(low) cells compared with the most differentiated cells. Genetic elimination of p63 in mouse and human oesophageal cells dramatically decreased esophagosphere formation and basal gene expression while increasing suprabasal gene expression. CONCLUSIONS: We developed clonogenic and organotypic culture systems for the quantitative analyses of human and mouse oesophageal stem/progenitor cells and identified novel cell surface marker combinations that enrich for these cells. Using this system, we demonstrate that elimination of p63 inhibits self-renewal of human oesophageal stem/progenitor cells. We anticipate that these esophagosphere culture systems will facilitate studies of oesophageal stem cell biology and may prove useful for ex vivo expansion of human oesophageal stem cells.


Assuntos
Autorrenovação Celular/genética , Células Epiteliais/fisiologia , Epitélio/crescimento & desenvolvimento , Esôfago/citologia , Esferoides Celulares/citologia , Células-Tronco/fisiologia , Animais , Antígenos CD/análise , Antígenos CD/genética , Antígeno CD24/análise , Antígeno CD24/genética , Diferenciação Celular/genética , Células Epiteliais/citologia , Expressão Gênica , Humanos , Integrina alfa6/análise , Integrina alfa6/genética , Camundongos , Camundongos Knockout , Fosfoproteínas/genética , Cultura Primária de Células/métodos , Receptores da Transferrina/análise , Receptores da Transferrina/genética , Esferoides Celulares/transplante , Células-Tronco/química , Células-Tronco/citologia , Transativadores/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
12.
Blood ; 124(4): 579-89, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-24850755

RESUMO

The transcription initiation factor I (TIF-IA) is an important regulator of the synthesis of ribosomal RNA (rRNA) through its facilitation of the recruitment of RNA polymerase I (Pol I) to the ribosomal DNA promoter. Activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway, which occurs commonly in acute myelogenous leukemia, enhances rRNA synthesis through TIF-IA stabilization and phosphorylation. We have discovered that TIF-IA coexists with a splicing isoform, TIF-90, which is expressed preferentially in the nucleolus and at higher levels in proliferating and transformed hematopoietic cells. TIF-90 interacts directly with Pol I to increase rRNA synthesis as a consequence of Akt activation. Furthermore, TIF-90 binds preferentially to a 90-kDa cleavage product of the actin binding protein filamin A (FLNA) that inhibits rRNA synthesis. Increased expression of TIF-90 overcomes the inhibitory effect of this cleavage product and stimulates rRNA synthesis. Because activated Akt also reduces FLNA cleavage, these results indicate that activated Akt and TIF-90 function in parallel to increase rRNA synthesis and, as a consequence, cell proliferation in leukemic cells. These results provide evidence that the direct targeting of Akt would be an effective therapy in acute leukemias in which Akt is activated.


Assuntos
Processamento Alternativo , Proteínas Reguladoras de Apoptose/metabolismo , Filaminas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas Nucleares/metabolismo , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Proteínas Reguladoras de Apoptose/genética , Western Blotting , Núcleo Celular/genética , Proliferação de Células , Imunoprecipitação da Cromatina , Filaminas/genética , Humanos , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Ribossômico/antagonistas & inibidores , RNA Ribossômico/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Células Tumorais Cultivadas
13.
Proc Natl Acad Sci U S A ; 110(51): 20681-6, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297901

RESUMO

Transcription initiation factor I (TIF-IA) plays an essential role in regulating ribosomal RNA (rRNA) synthesis by tethering RNA polymerase I (Pol I) to the rDNA promoter. We have found that activated Akt enhances rRNA synthesis through the phosphorylation of casein kinase IIα (CK2α) on a threonine residue near its N terminus. CK2 in turn phosphorylates TIF-IA, thereby increasing rDNA transcription. Activated Akt also stabilizes TIF-IA, induces its translocation to the nucleolus, and enhances its interaction with Pol I. Treatment with AZD8055, an inhibitor of both Akt and mammalian target of rapamycin phosphorylation, but not with rapamycin, disrupts Akt-mediated TIF-IA stability, translocation, and activity. These data support a model in which activated Akt enhances rRNA synthesis both by preventing TIF-IA degradation and phosphorylating CK2α, which in turn phosphorylates TIF-IA. This model provides an explanation for the ability of activated Akt to promote cell proliferation and, potentially, transformation.


Assuntos
Núcleo Celular/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Ribossômico/biossíntese , Transcrição Gênica/fisiologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Animais , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Núcleo Celular/genética , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Humanos , Células K562 , Camundongos , Morfolinas/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , RNA Ribossômico/genética
14.
J Cell Physiol ; 230(6): 1181-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25336383

RESUMO

The ability of a cell to undergo malignant transformation is both associated with and dependent on a concomitant increase in protein synthesis due to increased cell division rates and biosynthetic activities. Protein synthesis, in turn, depends upon the synthesis of ribosomes and thus ultimately on the transcription of ribosomal RNA by RNA polymerase I that occurs in the nucleolus. Enlargement of nucleoli has long been considered a hallmark of the malignant cell, but it is only recently that the rate of synthesis of rRNA in the nucleolus has been recognized as both a critical regulator of cellular proliferation and a potential target for therapeutic intervention. As might be expected, the factors regulating rRNA synthesis are both numerous and complex. It is the objective of this review to highlight recent advances in understanding how rRNA synthesis is perturbed in transformed mammalian cells and to consider the impact of these findings on the development of new approaches to the treatment of malignancies. In-depth analysis of the process of rRNA transcription itself may be found in several recently published reviews (Drygin et al., 2010, Annu Rev Pharmacol Toxicol 50:131-156; Bywater et al., 2013,Cancer Cell 22: 51-65; Hein et al., 2013,Trends Mol Med 19:643-654).


Assuntos
Expressão Gênica/fisiologia , Ribossomos/metabolismo , Transcrição Gênica/genética , Animais , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo
15.
Leukemia ; 38(6): 1236-1245, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643304

RESUMO

Targeting the metabolic dependencies of acute myeloid leukemia (AML) cells is a promising therapeutical strategy. In particular, the cysteine and methionine metabolism pathway (C/M) is significantly altered in AML cells compared to healthy blood cells. Moreover, methionine has been identified as one of the dominant amino acid dependencies of AML cells. Through RNA-seq, we found that the two nucleoside analogs 8-chloro-adenosine (8CA) and 8-amino-adenosine (8AA) significantly suppress the C/M pathway in AML cells, and methionine-adenosyltransferase-2A (MAT2A) is one of most significantly downregulated genes. Additionally, mass spectrometry analysis revealed that Venetoclax (VEN), a BCL-2 inhibitor recently approved by the FDA for AML treatment, significantly decreases the intracellular level of methionine in AML cells. Based on these findings, we hypothesized that combining 8CA or 8AA with VEN can efficiently target the Methionine-MAT2A-S-adenosyl-methionine (SAM) axis in AML. Our results demonstrate that VEN and 8CA/8AA synergistically decrease the SAM biosynthesis and effectively target AML cells both in vivo and in vitro. These findings suggest the promising potential of combining 8CA/8AA and VEN for AML treatment by inhibiting Methionine-MAT2A-SAM axis and provide a strong rationale for our recently activated clinical trial.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Sinergismo Farmacológico , Leucemia Mieloide Aguda , Metionina Adenosiltransferase , Metionina , S-Adenosilmetionina , Sulfonamidas , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Humanos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Sulfonamidas/farmacologia , Metionina/metabolismo , Metionina/análogos & derivados , Metionina Adenosiltransferase/metabolismo , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/genética , Animais , Camundongos , S-Adenosilmetionina/farmacologia , S-Adenosilmetionina/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral
16.
Nat Cancer ; 5(4): 601-624, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38413714

RESUMO

Current anticancer therapies cannot eliminate all cancer cells, which hijack normal arginine methylation as a means to promote their maintenance via unknown mechanisms. Here we show that targeting protein arginine N-methyltransferase 9 (PRMT9), whose activities are elevated in blasts and leukemia stem cells (LSCs) from patients with acute myeloid leukemia (AML), eliminates disease via cancer-intrinsic mechanisms and cancer-extrinsic type I interferon (IFN)-associated immunity. PRMT9 ablation in AML cells decreased the arginine methylation of regulators of RNA translation and the DNA damage response, suppressing cell survival. Notably, PRMT9 inhibition promoted DNA damage and activated cyclic GMP-AMP synthase, which underlies the type I IFN response. Genetically activating cyclic GMP-AMP synthase in AML cells blocked leukemogenesis. We also report synergy of a PRMT9 inhibitor with anti-programmed cell death protein 1 in eradicating AML. Overall, we conclude that PRMT9 functions in survival and immune evasion of both LSCs and non-LSCs; targeting PRMT9 may represent a potential anticancer strategy.


Assuntos
Arginina , Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Nucleotidiltransferases , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/metabolismo , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Nucleotidiltransferases/metabolismo , Arginina/metabolismo , Metilação/efeitos dos fármacos , Animais , Camundongos , Interferon Tipo I/metabolismo , Dano ao DNA , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos
17.
Nat Commun ; 14(1): 5325, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658085

RESUMO

The mechanisms underlying the transformation of chronic myeloid leukemia (CML) from chronic phase (CP) to blast crisis (BC) are not fully elucidated. Here, we show lower levels of miR-142 in CD34+CD38- blasts from BC CML patients than in those from CP CML patients, suggesting that miR-142 deficit is implicated in BC evolution. Thus, we create miR-142 knockout CML (i.e., miR-142-/-BCR-ABL) mice, which develop BC and die sooner than miR-142 wt CML (i.e., miR-142+/+BCR-ABL) mice, which instead remain in CP CML. Leukemic stem cells (LSCs) from miR-142-/-BCR-ABL mice recapitulate the BC phenotype in congenic recipients, supporting LSC transformation by miR-142 deficit. State-transition and mutual information analyses of "bulk" and single cell RNA-seq data, metabolomic profiling and functional metabolic assays identify enhanced fatty acid ß-oxidation, oxidative phosphorylation and mitochondrial fusion in LSCs as key steps in miR-142-driven BC evolution. A synthetic CpG-miR-142 mimic oligodeoxynucleotide rescues the BC phenotype in miR-142-/-BCR-ABL mice and patient-derived xenografts.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide de Fase Crônica , Leucemia Mieloide , MicroRNAs , Animais , Humanos , Camundongos , Crise Blástica , Células-Tronco
18.
Cell Stem Cell ; 30(8): 1072-1090.e10, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541212

RESUMO

TET2 is recurrently mutated in acute myeloid leukemia (AML) and its deficiency promotes leukemogenesis (driven by aggressive oncogenic mutations) and enhances leukemia stem cell (LSC) self-renewal. However, the underlying cellular/molecular mechanisms have yet to be fully understood. Here, we show that Tet2 deficiency significantly facilitates leukemogenesis in various AML models (mediated by aggressive or less aggressive mutations) through promoting homing of LSCs into bone marrow (BM) niche to increase their self-renewal/proliferation. TET2 deficiency in AML blast cells increases expression of Tetraspanin 13 (TSPAN13) and thereby activates the CXCR4/CXCL12 signaling, leading to increased homing/migration of LSCs into BM niche. Mechanistically, TET2 deficiency results in the accumulation of methyl-5-cytosine (m5C) modification in TSPAN13 mRNA; YBX1 specifically recognizes the m5C modification and increases the stability and expression of TSPAN13 transcripts. Collectively, our studies reveal the functional importance of TET2 in leukemogenesis, leukemic blast cell migration/homing, and LSC self-renewal as an mRNA m5C demethylase.


Assuntos
Dioxigenases , Leucemia Mieloide Aguda , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Medula Óssea/metabolismo , Carcinogênese/metabolismo , Células-Tronco/metabolismo , Desmetilação , Células-Tronco Neoplásicas/metabolismo , Tetraspaninas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo
19.
Sci Transl Med ; 15(689): eabq8513, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989375

RESUMO

Although the overall survival rate of B cell acute lymphoblastic leukemia (B-ALL) in childhood is more than 80%, it is merely 30% in refractory/relapsed and adult patients with B-ALL. This demonstrates a need for improved therapy targeting this subgroup of B-ALL. Here, we show that the ten-eleven translocation 1 (TET1) protein, a dioxygenase involved in DNA demethylation, is overexpressed and plays a crucial oncogenic role independent of its catalytic activity in B-ALL. Consistent with its oncogenic role in B-ALL, overexpression of TET1 alone in normal precursor B cells is sufficient to transform the cells and cause B-ALL in mice within 3 to 4 months. We found that TET1 protein is stabilized and overexpressed because of its phosphorylation mediated by protein kinase C epsilon (PRKCE) and ATM serine/threonine kinase (ATM), which are also overexpressed in B-ALL. Mechanistically, TET1 recruits STAT5B to the promoters of CD72 and JCHAIN and promotes their transcription, which in turn promotes B-ALL development. Destabilization of TET1 protein by treatment with PKC or ATM inhibitors (staurosporine or AZD0156; both tested in clinical trials), or by pharmacological targeting of STAT5B, greatly decreases B-ALL cell viability and inhibits B-ALL progression in vitro and in vivo. The combination of AZD0156 with staurosporine or vincristine exhibits a synergistic effect on inhibition of refractory/relapsed B-ALL cell survival and leukemia progression in PDX models. Collectively, our study reveals an oncogenic role of the phosphorylated TET1 protein in B-ALL independent of its catalytic activity and highlights the therapeutic potential of targeting TET1 signaling for the treatment of refractory/relapsed B-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Proto-Oncogênicas , Animais , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Fosforilação , Estaurosporina , Transdução de Sinais , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Proteínas de Ligação a DNA/metabolismo
20.
Cancers (Basel) ; 14(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35326597

RESUMO

It is known that 8-chloro-adenosine (8-Cl-Ado) is a novel RNA-directed nucleoside analog that targets leukemic stem cells (LSCs). In a phase I clinical trial with 8-Cl-Ado in patients with refractory or relapsed (R/R) AML, we observed encouraging but short-lived clinical responses, likely due to intrinsic mechanisms of LSC resistance. LSC homeostasis depends on amino acid-driven and/or fatty acid oxidation (FAO)-driven oxidative phosphorylation (OXPHOS) for survival. We recently reported that 8-Cl-Ado and the BCL-2-selective inhibitor venetoclax (VEN) synergistically inhibit FAO and OXPHOS in LSCs, thereby suppressing acute myeloid leukemia (AML) growth in vitro and in vivo. Herein, we report that 8-Cl-Ado inhibits ribosomal RNA (rRNA) synthesis through the downregulation of transcription initiation factor TIF-IA that is associated with increasing levels of p53. Paradoxically, 8-Cl-Ado-induced p53 increased FAO and OXPHOS, thereby self-limiting the activity of 8-Cl-Ado on LSCs. Since VEN inhibits amino acid-driven OXPHOS, the addition of VEN significantly enhanced the activity of 8-Cl-Ado by counteracting the self-limiting effect of p53 on FAO and OXPHOS. Overall, our results indicate that VEN and 8-Cl-Ado can cooperate in targeting rRNA synthesis and OXPHOS and in decreasing the survival of the LSC-enriched cell population, suggesting the VEN/8-Cl-Ado regimen as a promising therapeutic approach for patients with R/R AML.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA