Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Langmuir ; 39(16): 5851-5860, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37036269

RESUMO

Thin film coatings are widely applicable in materials for consumer products, electronics, optical coatings, and even biomedical applications. Wet coating can be an effective method to obtain thin films of functional materials, and this technique has recently been studied in depth for the formation of bioinspired polyphenolic films. Naturally occurring polyphenols such as tannic acid (TA) have garnered interest due to their roles in biological processes and their applicability as antioxidants, antibacterial agents, and corrosion inhibitors. Understanding the adsorption of polyphenols to surfaces is a core aspect in the fabrication processes of thin films of these materials. In this work, the adsorption of TA to gold surfaces is measured using a quartz crystal microbalance with dissipation monitoring (QCMD) and surface plasmon resonance (SPR) for a wide range of TA concentrations. The adsorption kinetics, aggregation, and stability of TA solutions in physiological-like conditions are studied. Unexpectedly, it is found that the adsorption rates depend only weakly on concentration because of the presence of TA aggregates that do not adsorb. The mechanism of layer formation is also investigated, finding that TA monolayers readily adsorb onto gold with flat or edge-on molecular orientations dependent on the solution concentration. A mix of orientations in the intermediate case leads to slow multilayer adsorption.

2.
FASEB J ; 35(2): e21306, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33475205

RESUMO

Glycosaminoglycans (GAGs) are long and unbranched anionic heteropolysaccharides that have been associated with virtually all amyloid deposits. Soluble sulfated GAGs are known for their propensity to promote the self-assembly of numerous amyloidogenic proteins and to modulate their cytotoxicity. Nonetheless, although GAGs are prevalent on the outer leaflet of eukaryotic cell plasma membrane as part of proteoglycans, their contributions in the perturbation of lipid bilayer induced by amyloid polypeptides remain unknown. Herein, we investigate the roles of GAGs in the cytotoxicity and plasma membrane perturbation induced by the islet amyloid polypeptide (IAPP), whose deposition in the pancreatic islets is associated with type II diabetes. Cellular assays using GAG-deficient cells reveal that GAGs exacerbate IAPP-induced cytotoxicity and permeabilization of the plasma membrane. Confocal microscopy and flow cytometry analyses show that IAPP sequestration at the cell surface is dependent of GAGs and of the aggregation propensity of the peptide. Using giant plasma membrane vesicles (GPMVs) prepared from GAG-deficient cells, we investigate the direct contributions of membrane-embedded proteoglycans in IAPP-induced membrane disassembly. In sharp contrast to soluble sulfated GAGs, kinetics of amyloid self-assembly expose that the presence of GAGs on GPMVs does not significantly modulate in vitro amyloid formation. Overall, this study indicates that cell surface GAGs increase the local concentration of IAPP in the vicinity of the plasma membrane, promoting lipid bilayer perturbation and cell death.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Glicosaminoglicanos/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Amiloide/metabolismo , Animais , Células CHO , Cricetulus , Citometria de Fluxo , Cinética , Bicamadas Lipídicas/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Transmissão
3.
Int J Mol Sci ; 23(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35269785

RESUMO

The overall impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on our society is unprecedented. The identification of small natural ligands that could prevent the entry and/or replication of the coronavirus remains a pertinent approach to fight the coronavirus disease (COVID-19) pandemic. Previously, we showed that the phenolic compounds corilagin and 1,3,6-tri-O-galloyl-ß-D-glucose (TGG) inhibit the interaction between the SARS-CoV-2 spike protein receptor binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 target receptor on the cell membrane of the host organism. Building on these promising results, we now assess the effects of these phenolic ligands on two other crucial targets involved in SARS-CoV-2 cell entry and replication, respectively: transmembrane protease serine 2 (TMPRSS2) and 3-chymotrypsin like protease (3CLpro) inhibitors. Since corilagin, TGG, and tannic acid (TA) share many physicochemical and structural properties, we investigate the binding of TA to these targets. In this work, a combination of experimental methods (biochemical inhibition assays, surface plasmon resonance, and quartz crystal microbalance with dissipation monitoring) confirms the potential role of TA in the prevention of SARS-CoV-2 infectivity through the inhibition of extracellular RBD/ACE2 interactions and TMPRSS2 and 3CLpro activity. Moreover, molecular docking prediction followed by dynamic simulation and molecular mechanics Poisson-Boltzmann surface area (MMPBSA) free energy calculation also shows that TA binds to RBD, TMPRSS2, and 3CLpro with higher affinities than TGG and corilagin. Overall, these results suggest that naturally occurring TA is a promising candidate to prevent and inhibit the infectivity of SARS-CoV-2.


Assuntos
COVID-19/metabolismo , Simulação de Acoplamento Molecular , SARS-CoV-2/metabolismo , Serina Endopeptidases/metabolismo , Taninos/farmacologia , Algoritmos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/epidemiologia , COVID-19/virologia , Proteases 3C de Coronavírus , Glucosídeos/química , Glucosídeos/metabolismo , Glucosídeos/farmacologia , Humanos , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/metabolismo , Taninos Hidrolisáveis/farmacologia , Cinética , Pandemias/prevenção & controle , Ligação Proteica/efeitos dos fármacos , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Ressonância de Plasmônio de Superfície , Taninos/química , Taninos/metabolismo , Internalização do Vírus/efeitos dos fármacos
4.
Biochemistry ; 60(29): 2285-2299, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34264642

RESUMO

The accumulation of insoluble amyloids in the pancreatic islets is a pathological hallmark of type II diabetes and correlates closely with the loss of ß-cell mass. The predominant component of these amyloid deposits is the islet amyloid polypeptide (IAPP). The factors contributing to the conversion of IAPP from a monomeric bioactive peptide hormone into insoluble amyloid fibrils remain partially elusive. In this study, we investigated the effect of the oxidative non-enzymatic post-translational modification induced by the reactive metabolite 4-hydroxynonenal (HNE) on IAPP aggregation and cytotoxicity. Incubation of IAPP with exogenous HNE accelerated its self-assembly into ß-sheet fibrils and led to the formation of a Michael adduct on the His-18 side chain. To model this covalent modification, the imidazole N(π) position of histidine was alkylated using a close analogue of HNE, the octyl chain. IAPP lipidated at His-18 showed a hastened random coil-to-ß-sheet conformational conversion into fibrillar assemblies with a distinct morphology, a low level of binding to thioflavin T, and a high surface hydrophobicity. Introducing an octyl chain on His-18 enhanced the ability of the peptide to perturb synthetic lipid vesicles, to permeabilize the plasma membrane, and to induce the death of pancreatic ß-cells. Alkylated IAPP triggered the self-assembly of unmodified IAPP by prompting primary nucleation and increased its capacity to perturb the plasma membrane, indicating that only a small proportion of the modified peptide is necessary to shift the balance toward the formation of proteotoxic species. This study underlines the importance of studying IAPP post-translational modifications induced by oxidative metabolites in the context of pancreatic amyloids.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Lipídeos de Membrana/metabolismo , Alquilação , Amiloide/metabolismo , Animais , Linhagem Celular , Oxirredução , Agregação Patológica de Proteínas/metabolismo , Conformação Proteica em Folha beta , Processamento de Proteína Pós-Traducional , Ratos
5.
Phys Chem Chem Phys ; 23(27): 14873-14888, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34223589

RESUMO

The COVID-19 disease caused by the virus SARS-CoV-2, first detected in December 2019, is still emerging through virus mutations. Although almost under control in some countries due to effective vaccines that are mitigating the worldwide pandemic, the urgency to develop additional vaccines and therapeutic treatments is imperative. In this work, the natural polyphenols corilagin and 1,3,6-tri-O-galloy-ß-d-glucose (TGG) are investigated to determine the structural basis of inhibitor interactions as potential candidates to inhibit SARS-CoV-2 viral entry into target cells. First, the therapeutic potential of the ligands are assessed on the ACE2/wild-type RBD. We first use molecular docking followed by molecular dynamics, to take into account the conformational flexibility that plays a significant role in ligand binding and that cannot be captured using only docking, and then analyze more precisely the affinity of these ligands using MMPBSA binding free energy. We show that both ligands bind to the ACE2/wild-type RBD interface with good affinities which might prevent the ACE2/RBD association. Second, we confirm the potency of these ligands to block the ACE2/RBD association using a combination of surface plasmon resonance and biochemical inhibition assays. These experiments confirm that TGG and, to a lesser extent, corilagin, inhibit the binding of RBD to ACE2. Both experiments and simulations show that the ligands interact preferentially with RBD, while weak binding is observed with ACE2, hence, avoiding potential physiological side-effects induced by the inhibition of ACE2. In addition to the wild-type RBD, we also study numerically three RBD mutations (E484K, N501Y and E484K/N501Y) found in the main SARS-CoV-2 variants of concerns. We find that corilagin could be as effective for RBD/E484K but less effective for the RBD/N501Y and RBD/E484K-N501Y mutants, while TGG strongly binds at relevant locations to all three mutants, demonstrating the significant interest of these molecules as potential inhibitors for variants of SARS-CoV-2.


Assuntos
Antivirais/química , Ácido Gálico/análogos & derivados , Glucose/análogos & derivados , Glucosídeos/química , Taninos Hidrolisáveis/química , SARS-CoV-2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Sítios de Ligação , Ácido Gálico/química , Glucose/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas/genética , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus/efeitos dos fármacos
6.
J Biol Chem ; 294(21): 8452-8463, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30975901

RESUMO

The islet amyloid polypeptide (IAPP) is a 37-residue peptide hormone whose deposition as amyloid fibrils in the pancreatic islets is associated with type 2 diabetes. Previous studies have suggested that residue Asn-21 plays a critical role in the in vitro self-assembly of IAPP. Herein, we studied structure-self-assembly relationships focusing on position 21 to gain detailed insights into the molecular mechanisms of IAPP self-assembly and to probe the conformational nature of the toxic assemblies associated with ß-cell death. Thioflavin T (ThT) fluorescence, CD spectroscopy, and transmission EM analysis revealed that the Asn-21 amide side chain is not required for IAPP nucleation and amyloid elongation, as N21A and N21G variants assembled into prototypical fibrils. In contrast, Asn-21 substitution with the conformationally constrained and turn-inducing residue Pro accelerated IAPP self-assembly. Successive substitutions with hydrophobic residues led to the formation of ThT-negative ß-sheet-rich aggregates having high surface hydrophobicity. Cell-based assays revealed no direct correlation between the in vitro amyloidogenicity of these variants and their toxicity. In contrast, leakage of anionic lipid vesicles disclosed that membrane disruption is closely associated with cytotoxicity. We observed that the N21F variant self-assembles into worm-like aggregates, causing loss of lipid membrane structural integrity and inducing ß-cell apoptosis. These results indicate that specific intra- and intermolecular interactions involving Asn-21 promote IAPP primary nucleation events by modulating the conformational conversion of the oligomeric intermediates into amyloid fibrils. Our study identifies position 21 as a hinge residue that modulates IAPP amyloidogenicity and cytotoxicity.


Assuntos
Apoptose/efeitos dos fármacos , Membrana Celular/metabolismo , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Peptídeos , Animais , Linhagem Celular Tumoral , Membrana Celular/patologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células Secretoras de Insulina/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Estrutura Secundária de Proteína , Ratos
7.
Biol Reprod ; 102(1): 185-198, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31318021

RESUMO

Modulation of the activation status of immune cell populations during pregnancy depends on placental villous cytotrophoblast (VCT) cells and the syncytiotrophoblast (STB). Failure in the establishment of this immunoregulatory function leads to pregnancy complications. Our laboratory has been studying Syncytin-2 (Syn-2), an endogenous retroviral protein expressed in placenta and on the surface of placental exosomes. This protein plays an important role not only in STB formation through its fusogenic properties, but also through its immunosuppressive domain (ISD). Considering that Syn-2 expression is importantly reduced in preeclamptic placentas, we were interested in addressing its possible immunoregulatory effects on T cells. Activated Jurkat T cells and peripheral blood mononuclear cells (PBMCs) were treated with monomeric or dimerized version of a control or a Syn-2 ISD peptide. Change in phosphorylation levels of ERK1/2 MAP kinases was selectively noted in Jurkat cells treated with the dimerized ISD peptide. Upon incubation with the dimerized Syn-2 ISD peptide, significant reduction in Th1 cytokine production was further demonstrated by ELISA and Human Th1/Th2 Panel Multi-Analyte Flow Assay. To determine if exosome-associated Syn-2 could also be immunosuppressive placental exosomes were incubated with activated Jurkat and PBMCs. Quantification of Th1 cytokines in the supernatants revealed severe reduction in T cell activation. Interestingly, exosomes from Syn-2-silenced VCT incubated with PBMCs were less suppressive when compared with exosome derived from VCT transfected with control small interfering RNA (siRNA). Our results suggest that Syn-2 is an important immune regulator both locally and systemically, via its association with placental exosomes.


Assuntos
Exossomos/metabolismo , Proteínas da Gravidez/metabolismo , Linfócitos T/metabolismo , Citocinas/metabolismo , Retrovirus Endógenos , Humanos , Terapia de Imunossupressão , Células Jurkat , Leucócitos Mononucleares/metabolismo , Fosforilação , Proteínas da Gravidez/genética , Transdução de Sinais/fisiologia , Trofoblastos/metabolismo
8.
J Virol ; 93(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30404795

RESUMO

The existence of the antisense transcript-encoded HIV-1 antisense protein (ASP) was recently reinforced by in silico analyses providing evidence for recent appearance of this gene in the viral genome. Our previous studies led to the detection of ASP in various cell lines by Western blotting, flow cytometry, and confocal microscopy analyses and reported that it induced autophagy, potentially through multimer formation. Here, our goals were to assess autophagy induction by ASP from different clades and to identify the implicated autophagy factors. We first demonstrated that ASP formed multimers, partly through its amino-terminal region and cysteine residues. Removal of this region was further associated with lower induction of autophagy, as assessed by autophagosome formation. ASPs from different clades (A, B, C, D, and G) were tested next and were detected in monomeric and multimeric forms at various levels, and all induced autophagy (clade A ASP was less efficient), as determined by LC3-II and p62 (SQSTM1) levels. Furthermore, CRISPR-based knockout of ATG5, ATG7, and p62 genes led to increased ASP levels. Confocal microscopy analyses showed that ASP colocalized with p62 and LC3-II in autophagosome-like structures. Coimmunoprecipitation experiments further demonstrated that p62 associated with ASP through its PB1 domain. Interestingly, immunoprecipitation experiments supported the idea that ASP is ubiquitinated and that ubiquitination was modulating its stability. We are thus suggesting that ASP induces autophagy through p62 interaction and that its abundance is controlled by autophagy, in which ubiquitin plays an important role. Understanding the mechanisms underlying ASP degradation is essential to better assess its function.IMPORTANCE In the present study, we provide the first evidence that a new HIV-1 protein termed ASP derived from different clades acts similarly in inducing autophagy, an important cellular process implicated in the degradation of excess or defective cellular material. We have gained further knowledge on the mechanism mediating the activation of autophagy. Our studies have important ramifications in the understanding of viral replication and the pathogenesis associated with HIV-1 in infected individuals. Indeed, autophagy is implicated in antigen presentation during immune response and could thus be rendered inefficient in infected cells, such as dendritic cells. Furthermore, a possible link with HIV-1-associated neurological disorder (HAND) might also be a possible association with the capacity of ASP to induce autophagy. Our studies hence demonstrate the importance in conducting further studies on this protein as it could represent a new interesting target for antiretroviral therapies and vaccine design.


Assuntos
HIV-1/metabolismo , Proteína Sequestossoma-1/química , Proteína Sequestossoma-1/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Animais , Autofagia , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Ubiquitinação
9.
Biochem J ; 474(13): 2249-2260, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28536157

RESUMO

Secretin is a peptide hormone that exerts pleiotropic physiological functions by specifically binding to its cognate membrane-bound receptor. The membrane catalysis model of peptide-receptor interactions states that soluble peptidic ligands initially interact with the plasma membrane. This interaction increases the local concentration and structures the peptide, enhancing the rate of receptor binding. However, this model does not consider the dense network of glycosaminoglycans (GAGs) at the surface of eukaryotic cells. These sulfated polysaccharide chains are known to sequester numerous proteic signaling molecules. In the present study, we evaluated the interaction between the peptide hormone secretin and sulfated GAGs and its contribution to cell surface binding. Using GAG-deficient cells and competition experiments with soluble GAGs, we observed by confocal microscopy and flow cytometry that GAGs mediate the sequestration of secretin at the cell surface. Isothermal titration calorimetry and surface plasmon resonance revealed that secretin binds to heparin with dissociation constants ranging between 0.9 and 4 µM. By designing secretin derivatives with a restricted conformational ensemble, we observed that this interaction is mediated by the presence of a specific conformational GAG-recognition motif that decorates the surface of the peptide upon helical folding. The present study identifies secretin as a novel GAG-binding polypeptide and opens new research direction on the functional role of GAGs in the biology of secretin.


Assuntos
Membrana Celular/metabolismo , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Secretina/metabolismo , Heparina/química , Humanos , Conformação Molecular , Ligação Proteica , Conformação Proteica , Secretina/química , Ressonância de Plasmônio de Superfície
10.
Biochemistry ; 56(29): 3808-3817, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28665109

RESUMO

Deamidation of an asparagine residue is a spontaneous non-enzymatic post-translational modification that results in the conversion of asparagine into a mixture of aspartic acid and isoaspartic acid. This chemical conversion modulates protein conformation and physicochemical properties, which could lead to protein misfolding and aggregation. In this study, we investigated the effects of site-specific Asn deamidation on the amyloidogenicity of the aggregation-prone peptide islet amyloid polypeptide (IAPP). IAPP is a 37-residue peptidic hormone whose deposition as insoluble amyloid fibrils is closely associated with type 2 diabetes. Asn residues were successively substituted with an Asp or isoAsp, and amyloid formation was evaluated by a thioflavin T fluorescence assay, circular dichroism spectroscopy, atomic force microscopy, and transmission electron microscopy. Whereas deamidation at position 21 inhibited IAPP conformational conversion and amyloid formation, the N14D mutation accelerated self-assembly and led to the formation of long and thick amyloid fibrils. In contrast, IAPP was somewhat tolerant to the successive deamidation of Asn residues 22, 31, and 35. Interestingly, a small molar ratio of IAPP deamidated at position 14 promoted the formation of nucleating species and the elongation from unmodified IAPP. Besides, using the rat pancreatic ß cell line INS-1E, we observed that site-specific deamidation did not significantly alter IAPP-induced toxicity. These data indicate that Asn deamidation can modulate IAPP amyloid formation and fibril morphology and that the site of modification plays a critical role. Above all, this study reinforces the notion that IAPP amyloidogenesis is governed by precise intermolecular interactions involving specific Asn side chains.


Assuntos
Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Mutação de Sentido Incorreto , Agregados Proteicos , Agregação Patológica de Proteínas , Substituição de Aminoácidos , Animais , Asparagina/química , Asparagina/genética , Benzotiazóis , Linhagem Celular Tumoral , Células Secretoras de Insulina/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Ratos , Tiazóis/química
11.
Biochim Biophys Acta ; 1864(4): 409-18, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26802902

RESUMO

Light chain amyloidosis (AL) is a lethal disease associated with the deposition of misfolded immunoglobulin light chains (LC) as amyloid fibrils in the extracellular space of vital organs. The exact mechanisms of LC self-assembly and the molecular basis leading to cellular and organ failure still remain poorly understood. In this study, we investigated the relationship between the quaternary structure, the stability and the amyloidogenecity of LC variable domain (VL) from the λ6 germline. We observed that the amyloidogenic λ6 Wil and its non-amyloidogenic counterpart Jto dimerize in a concentration-dependent manner and that the dimer affinity is considerably decreased in the presence of a high ionic strength. Our results showed that the dimeric state delays the structural conversion associated with amyloid formation and that the monomer is critical to initiate amyloidogenesis. Thermal and chemical unfolding studies revealed that the dimeric state of VL λ6 has an equivalent stability to the monomer. This indicates that the protective effect of dimerization is not related to thermodynamic stability but, most likely, resides in specific structural features. The toxicity of monomeric Jto and Wil as well as fibrillar aggregates was evaluated on cardiomyoblasts and ThT-negative proteospecies reduced cellular viability when employed at high concentration. This study provides novel insights into the complex process of LC amyloidogenesis and suggests that dimer stabilization constitutes a promising strategy to prevent self-assembly and amyloid deposition.


Assuntos
Amiloide/biossíntese , Cadeias lambda de Imunoglobulina/química , Multimerização Proteica , Concentração Osmolar , Agregados Proteicos , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Termodinâmica
12.
Int J Mol Sci ; 16(11): 27391-400, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26580613

RESUMO

Over the last two decades, the potential usage of cell-penetrating peptides (CPPs) for the intracellular delivery of various molecules has prompted the identification of novel peptidic identities. However, cytotoxic effects and unpredicted immunological responses have often limited the use of various CPP sequences in the clinic. To overcome these issues, the usage of endogenous peptides appears as an appropriate alternative approach. The hormone pituitary adenylate-cyclase-activating polypeptide (PACAP38) has been recently identified as a novel and very efficient CPP. This 38-residue polycationic peptide is a member of the secretin/glucagon/growth hormone-releasing hormone (GHRH) superfamily, with which PACAP38 shares high structural and conformational homologies. In this study, we evaluated the cell-penetrating ability of cationic peptide hormones in the context of the expression of cell surface glycosaminoglycans (GAGs). Our results indicated that among all peptides evaluated, PACAP38 was unique for its potent efficiency of cellular uptake. Interestingly, the abilities of the peptides to reach the intracellular space did not correlate with their binding affinities to sulfated GAGs, but rather to their capacity to clustered heparin in vitro. This study demonstrates that the uptake efficiency of a given cationic CPP does not necessarily correlate with its affinity to sulfated GAGs and that its ability to cluster GAGs should be considered for the identification of novel peptidic sequences with potent cellular penetrating properties.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Hormônios Peptídicos/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Linhagem Celular , Membrana Celular/metabolismo , Peptídeos Penetradores de Células/química , Cricetulus , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Ligantes , Dados de Sequência Molecular , Hormônios Peptídicos/química , Ligação Proteica , Conformação Proteica , Receptores Acoplados a Proteínas G/metabolismo
13.
Angew Chem Int Ed Engl ; 54(48): 14383-7, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26440575

RESUMO

Amyloid deposition is a hallmark of many diseases, such as the Alzheimer's disease. Numerous amyloidogenic proteins, including the islet amyloid polypeptide (IAPP) associated with type II diabetes, are natively unfolded and need to undergo conformational rearrangements allowing the formation of locally ordered structure(s) to initiate self-assembly. Recent studies have indicated that the formation of α-helical intermediates accelerates fibrillization, suggesting that these species are on-pathway to amyloid assembly. By identifying an IAPP derivative with a restricted conformational ensemble that co-assembles with IAPP, we observed that helical species were off-pathway in homogenous environment and in presence of lipid bilayers or glycosaminoglycans. Moreover, preventing helical folding potentiated membrane perturbation and IAPP cytotoxicity, indicating that stabilization of helical motif(s) is a promising strategy to prevent cell degeneration associated with amyloidogenesis.


Assuntos
Amiloide/química , Peptídeos/química , Microscopia de Força Atômica
14.
J Inorg Biochem ; 256: 112575, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678912

RESUMO

Escherichia coli O157:H7 possesses an 8-gene cluster (chu genes) that contains genes involved in heme transport and processing from the human host. Among the chu genes, four encode cytoplasmic proteins (ChuS, ChuX, ChuY and ChuW). ChuX was previously shown to be a heme binding protein and to assist ChuW in heme degradation under anaerobic conditions. The purpose of this work was to investigate if ChuX works in concert with ChuS, which is a protein able to degrade heme by a non-canonical mechanism and release the iron from the porphyrin under aerobic conditions using hydrogen peroxide as the oxidant. We showed that when the heme-bound ChuX and apo-ChuS protein are mixed, heme is efficiently transferred from ChuX to ChuS. Heme-bound ChuX displayed a peroxidase activity with ABTS and H2O2 but not heme-bound ChuS, which is an efficient test to determine the protein to which heme is bound in the ChuS-ChuX complex. We found that ChuX protects heme from chemical oxidation and that it has no heme degradation activity by itself. Unexpectedly, we found that ChuX inhibits heme degradation by ChuS and stops the reaction at an early intermediate. We determined using surface plasmon resonance that ChuX interacts with ChuS and that it forms a relatively stable complex. These results indicate that ChuX in addition to its heme transfer activity is a regulator of ChuS activity, a function that was not described before for any of the heme carrier protein that delivers heme to heme degradation enzymes.


Assuntos
Escherichia coli O157 , Heme Oxigenase (Desciclizante) , Proteínas Ligantes de Grupo Heme , Heme , Escherichia coli O157/metabolismo , Escherichia coli O157/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Heme/metabolismo , Proteínas Ligantes de Grupo Heme/metabolismo , Hemeproteínas/metabolismo , Hemeproteínas/genética , Peróxido de Hidrogênio/metabolismo , Oxirredução , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo
15.
Front Mol Neurosci ; 17: 1371145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571813

RESUMO

The prevailing model behind synapse development and specificity is that a multitude of adhesion molecules engage in transsynaptic interactions to induce pre- and postsynaptic assembly. How these extracellular interactions translate into intracellular signal transduction for synaptic assembly remains unclear. Here, we focus on a synapse organizing complex formed by immunoglobulin superfamily member 21 (IgSF21) and neurexin2α (Nrxn2α) that regulates GABAergic synapse development in the mouse brain. We reveal that the interaction between presynaptic Nrxn2α and postsynaptic IgSF21 is a high-affinity receptor-ligand interaction and identify a binding interface in the IgSF21-Nrxn2α complex. Despite being expressed in both dendritic and somatic regions, IgSF21 preferentially regulates dendritic GABAergic presynaptic differentiation whereas another canonical Nrxn ligand, neuroligin2 (Nlgn2), primarily regulates perisomatic presynaptic differentiation. To explore mechanisms that could underlie this compartment specificity, we targeted multiple signaling pathways pharmacologically while monitoring the synaptogenic activity of IgSF21 and Nlgn2. Interestingly, both IgSF21 and Nlgn2 require c-jun N-terminal kinase (JNK)-mediated signaling, whereas Nlgn2, but not IgSF21, additionally requires CaMKII and Src kinase activity. JNK inhibition diminished de novo presynaptic differentiation without affecting the maintenance of formed synapses. We further found that Nrxn2α knockout brains exhibit altered synaptic JNK activity in a sex-specific fashion, suggesting functional linkage between Nrxns and JNK. Thus, our study elucidates the structural and functional relationship of IgSF21 with Nrxn2α and distinct signaling pathways for IgSF21-Nrxn2α and Nlgn2-Nrxn synaptic organizing complexes in vitro. We therefore propose a revised hypothesis that Nrxns act as molecular hubs to specify synaptic properties not only through their multiple extracellular ligands but also through distinct intracellular signaling pathways of these ligands.

16.
Biopolymers ; 100(6): 645-55, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23526456

RESUMO

Glycosaminoglycans (GAGs) are found in association with virtually all extracellular protein deposits related to amyloid diseases. Particularly, GAGs were shown to enhance fibrillogenesis of the islet amyloid polypeptide (IAPP), a peptide hormone whose aggregation is associated with Type-II diabetes pathogenesis. However, the exact molecular mechanism by which GAGs enhance IAPP amyloidogenesis remains unclear as well as the implications of cell surface GAGs in IAPP-mediated cytotoxicity. The aim of this study was to gain conformational and thermodynamics insights about GAGs-IAPP interactions as a function of IAPP protonation state and buffer ionic strength as well as to explore the roles of cell surface GAGs in IAPP cytotoxicity. Isothermal titration calorimetry revealed that protonation of residue His(18) increases the binding affinity of IAPP towards heparin and, in turn, strongly stimulates fibrillogenesis. Interaction of IAPP with heparin induces a random coil to helix conformational conversion and the helical intermediates could be on-pathway to amyloid fibrils formation. Using rat beta-cells INS-1 that were enzymatically treated with GAG lyases and a CHO cell line that is deficient in the biosynthesis of GAGs, we observed that the lack of GAGs at the plasma membrane does not prevent IAPP-induced toxicity, whereas the presence of soluble heparin in the cell media inhibits IAPP cytotoxicity. Overall, this study reinforces the postulate that sulfated GAGs are actively implicated in IAPP amyloidogenic process in vivo, where they could play a protective role by interacting with cytotoxic species and converting them into less culprit amyloid fibrils.


Assuntos
Sequência de Aminoácidos , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Amiloide/química , Amiloidose , Animais , Diabetes Mellitus Tipo 2/metabolismo , Dados de Sequência Molecular
17.
ACS Infect Dis ; 9(6): 1232-1244, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37200051

RESUMO

Peptides with the ability to self-assemble into nanoparticles have emerged as an attractive strategy to design antigen delivery platforms for subunit vaccines. While toll-like receptor (TLR) agonists are promising immunostimulants, their use as soluble agents is limited by their rapid clearance and off-target inflammation. Herein, we harnessed molecular co-assembly to prepare multicomponent cross-ß-sheet peptide nanofilaments exposing an antigenic epitope derived from the influenza A virus and a TLR agonist. The TLR7 agonist imiquimod and the TLR9 agonist CpG were respectively functionalized on the assemblies by means of an orthogonal pre- or post-assembly conjugation strategy. The nanofilaments were readily uptaken by dendritic cells, and the TLR agonists retained their activity. Multicomponent nanovaccines induced a robust epitope-specific immune response and completely protected immunized mice from a lethal influenza A virus inoculation. This versatile bottom-up approach is promising for the preparation of synthetic vaccines with customized magnitude and polarization of the immune responses.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Camundongos , Animais , Peptídeos/química , Adjuvantes Imunológicos/farmacologia , Epitopos
18.
Cells ; 12(7)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37048156

RESUMO

Synucleinopathies form a group of neurodegenerative diseases defined by the misfolding and aggregation of α-synuclein (α-syn). Abnormal accumulation and spreading of α-syn aggregates lead to synapse dysfunction and neuronal cell death. Yet, little is known about the synaptic mechanisms underlying the α-syn pathology. Here we identified ß-isoforms of neurexins (ß-NRXs) as presynaptic organizing proteins that interact with α-syn preformed fibrils (α-syn PFFs), toxic α-syn aggregates, but not α-syn monomers. Our cell surface protein binding assays and surface plasmon resonance assays reveal that α-syn PFFs bind directly to ß-NRXs through their N-terminal histidine-rich domain (HRD) at the nanomolar range (KD: ~500 nM monomer equivalent). Furthermore, our artificial synapse formation assays show that α-syn PFFs diminish excitatory and inhibitory presynaptic organization induced by a specific isoform of neuroligin 1 that binds only ß-NRXs, but not α-isoforms of neurexins. Thus, our data suggest that α-syn PFFs interact with ß-NRXs to inhibit ß-NRX-mediated presynaptic organization, providing novel molecular insight into how α-syn PFFs induce synaptic pathology in synucleinopathies such as Parkinson's disease and dementia with Lewy bodies.


Assuntos
Doença de Parkinson , Sinucleinopatias , Humanos , alfa-Sinucleína/metabolismo , Sinucleinopatias/metabolismo , Doença de Parkinson/metabolismo , Corpos de Lewy/metabolismo , Sinapses/metabolismo
19.
Front Mol Biosci ; 9: 1017336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262476

RESUMO

The islet amyloid polypeptide (IAPP) is a 37-residue aggregation-prone peptide hormone whose deposition as insoluble fibrils in the islets of Langerhans is associated with type II diabetes. Therapeutic interventions targeting IAPP amyloidogenesis, which contributes to pancreatic ß-cell degeneration, remain elusive owing to the lack of understanding of the self-assembly mechanisms and of the quaternary proteospecies mediating toxicity. While countless studies have investigated the contributions of the 20-29 amyloidogenic core in self-assembly, IAPP central region, i.e. positions 11 to 19, has been less studied, notwithstanding its potential key role in oligomerization. In this context, the present study aimed at investigating the physicochemical and conformational properties driving IAPP self-assembly and associated cytotoxicity. Computational tools and all-atom molecular dynamics simulation suggested that the hydrophobic 12-17 segment promotes IAPP self-recognition and aggregation. Alanine scanning revealed that the hydrophobic side chains of Leu12, Phe15 and Val17 are critical for amyloid fibril formation. Destabilization of the α-helical folding by Pro substitution enhanced self-assembly when the pyrrolidine ring was successively introduced at positions Ala13, Asn14 and Phe15, in comparison to respective Ala-substituted counterparts. Modulating the peptide backbone flexibility at position Leu16 through successive incorporation of Pro, Gly and α-methylalanine, inhibited amyloid formation and reduced cytotoxicity, while the isobutyl side chain of Leu16 was not critical for self-assembly and IAPP-mediated toxicity. These results highlight the importance of the 12-17 hydrophobic region of IAPP for self-recognition, ultimately supporting the development of therapeutic approaches to prevent oligomerization and/or fibrillization.

20.
Commun Biol ; 4(1): 939, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354242

RESUMO

Protein misfolding and amyloid deposition are associated with numerous diseases. The detailed characterization of the proteospecies mediating cell death remains elusive owing to the (supra)structural polymorphism and transient nature of the assemblies populating the amyloid pathway. Here we describe the identification of toxic amyloid fibrils with oligomer-like characteristics, which were assembled from an islet amyloid polypeptide (IAPP) derivative containing an Asn-to-Gln substitution (N21Q). While N21Q filaments share structural properties with cytocompatible fibrils, including the 4.7 Å inter-strand distance and ß-sheet-rich conformation, they concurrently display characteristics of oligomers, such as low thioflavin-T binding, high surface hydrophobicity and recognition by the A11 antibody, leading to high potency to disrupt membranes and cause cellular dysfunction. The toxic oligomer-like conformation of N21Q fibrils, which is preserved upon elongation, is transmissible to naïve IAPP. These stable fibrils expanding the conformational diversity of amyloid assemblies represent an opportunity to elucidate the structural basis of amyloid disorders.


Assuntos
Amiloide/metabolismo , Amiloidose/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Benzotiazóis/metabolismo , Morte Celular , Interações Hidrofóbicas e Hidrofílicas , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA