Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33859711

RESUMO

Psychological stress (PS) plays a significant role as an aggravating factor in atopic dermatitis (AD). The traditional medicine prescription, Gyogamdan, has been used to treat chest discomfort and mood disorders caused by PS. This study investigated the effects of an ethanolic extract of Gyogamdan (GGDE) on stress-associated AD models and the underlying mechanisms. 2,4-Dinitrochlorobenzene- (DNCB-) treated BALB/c mice were exposed to social isolation (SI) stress. The effects of orally administered GGDE (100 or 500 mg/kg) were evaluated by ELISA, western blotting, and an open field test (OFT). SI stress exaggerated the skin inflammation and induced locomotor hyperactivity in the AD mouse model. GGDE reduced the levels of IgE, TNF-α, IL-13, eotaxin, and VEGF and mast cell/eosinophil infiltration and prevented the decreases in the levels of involucrin and loricrin in the skin. GGDE also suppressed the SI-induced increases in corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (CORT) in socially isolated AD mice. Furthermore, GGDE reduced traveling distances and mean speed significantly in the OFT. The in vitro experiments were performed using HaCaT, HMC-1, PC12, and BV2 cells. In the TNF-α/IFN-γ- (TI-) stimulated HaCaT cells, GGDE decreased the thymus and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) production significantly by inhibiting p-STAT1 and NF-κB signaling. GGDE also reduced VEGF production in HMC-1 cells stimulated with CRH/substance P (SP) by inhibiting p-ERK signaling pathway. GGDE increased the cell viability significantly and suppressed apoptosis in CORT-stimulated PC12 cells. Moreover, GGDE suppressed the LPS-induced production of NO, TNF-α, IL-1ß, and IL-6 in BV2 cells. These results suggest that GGDE might be useful in patients with AD, which is exacerbated by PS.

2.
Artigo em Inglês | MEDLINE | ID: mdl-33603823

RESUMO

Gardeniae Fructus (GF) is the fruit of Gardenia jasminoides Ellis and is traditionally prescribed to treat pyogenic infections and skin ulcers. This study investigated the protective effects of GF and the underlying mechanism responsible for these effects on diesel exhaust particulate matter- (DEP-) induced skin damage. The protective effects of an ethanolic extract of GF (GFE) and its constituents (geniposidic acid, gardenoside, geniposide, chlorogenic acid, and genipin) were examined by analyzing reactive oxygen species (ROS) production, apoptosis, and tight junction (TJ) protein expression in HaCaT cells. Treatment with GFE dose-dependently inhibited intracellular ROS production and apoptosis by regulating the protein expressions of Bax, Bcl-2, and cytochrome C in DEP-stimulated (100 µg/ml) HaCaT cells. Mechanistic studies revealed that the protective effects of GFE were related to its activation of Nrf2 and HO-1 signaling in HaCaT cells. Geniposide, a main constituent of GFE, enhanced the expression of occludin in DEP-stimulated HaCaT cells. Furthermore, topical application of geniposide reduced the expressions of 8-OHdG and Bax and increased the expression of occludin in the dorsal skin lesions of DEP-stimulated mice. Gardeniae Fructus and its main component geniposide are potential candidates for the repair of DEP-induced skin damage due to their antioxidant and antiapoptotic activities.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33149756

RESUMO

Herbal combinations of Rhei Radix et Rhizoma, Gardeniae Fructus, Cimicifugae Rhizoma, and Ginseng Radix have been used in traditional formulas to treat the symptoms of heat and dryness. This study investigated the therapeutic effects of a natural compound mixture (PSM) of these herbal combinations, containing emodin, genipin, chlorogenic acid, cimigenoside, and ginsenoside Rb1, for the treatment of psoriasis and its underlying molecular mechanisms. PSM was applied topically to the dorsal skin lesions of imiquimod- (IMQ-) induced C57BL/6 mice, and the expression of the proinflammatory mediators was investigated. The topical application of 1% PSM reduced psoriasis-like symptoms in IMQ-induced C57BL/6 mice significantly. PSM also attenuated the production of IFN-γ, IL-1ß, and IL-6 in skin lesions. Histological analysis showed that PSM had antipsoriatic effects by reducing the lesional epidermal thickness. Either M5 (IL-1α, IL-17A, IL-22, oncostatin M, and TNF-α, 10 ng/ml each) or IL-22- (100 ng/ml) stimulated HaCaT cells were used to examine the efficacy and underlying mechanism of PSM. In M5-stimulated HaCaT cells, PSM inhibited the production of C-X-C motif chemokine ligand (CXCL) 10 and C-C motif chemokine ligand (CCL) 20 effectively. Moreover, compared to the use of a single compound, it had synergistic inhibitory effects in CXCL8 production. PSM suppressed the phosphorylation of ERK1/2, p38, and STAT3 signaling pathways in M5-stimulated HaCaT cells. Furthermore, PSM reduced the proliferation rate and K16 and K17 expressions in IL-22-stimulated HaCaT cells by inhibiting the Akt/mTOR signaling pathway. These results suggest that PSM may have a therapeutic potential in the treatment of psoriasis lesions.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32714398

RESUMO

Forsythiae Fructus, Lonicerae Flos, and Scutellariae Radix are medicinal herbs that possess anti-inflammatory and anti-atopic effects. Hence, we investigated the effects of a mixture (ADM), containing arctigenin, hederagenin, and baicalein, which are the main compound from these herbs on atopic dermatitis (AD) skin lesions and the underlying molecular mechanisms. ADM was topically applied to dorsal skin lesions of 2,4-dinitrochlorobenzene- (DNCB-) induced ICR mice, and the expressions of proinflammatory mediators and HPA axis hormones were investigated. The topical application of 0.5% ADM significantly reduced the DNCB-induced symptoms of AD in ICR mice. Histological analysis showed that ADM exerted antiatopic effects by reducing the epidermal thickness and mast cell infiltration into skin lesions. 0.5% ADM attenuated the levels of TNF-α, IFN-γ, IL-4, and VEGF in skin lesions and serum IgE. The production of Th1-/Th2-related cytokines in splenic tissues, including TNF-α, IFN-γ, IL-12, and IL-4, were also decreased by ADM treatment. ADM diminished corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosteroid (CORT) production in DNCB-induced mice. In vitro, ADM reduced the productions of TARC/CCL17, MDC/CCL22, IL-6, and ICAM-1 in TNF-α/IFN-γ- (TI-) stimulated HaCaT cells by suppressing the ERK and JNK signaling pathways. In addition, ADM inhibited corticotropin-releasing hormone/substance P- (CRH/SP-) induced VEGF production in HMC-1 cells. These results suggest that ADM may have therapeutic potential in AD by reducing inflammation and attenuating HPA axis activation.

5.
J Ethnopharmacol ; 228: 132-141, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30243826

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Astragali Radix (AR), the root of Astragalus mongholicus Bunge, is widely applied in traditional medicine to promote skin health and tissue regeneration. AIM OF THE STUDY: This study investigated the effects of AR and its active compound, formononetin (FMT), on skin barrier defects in keratinocytes exposed to diesel particulate matter (PM). MATERIALS AND METHODS: HaCaT cells and three-dimensional (3D) human skin reconstructed model were pre-treated with AR (50, 100 µg/ml) and FMT (30, 50 µM), then treated with PM (200 µg/ml). RESULTS: AR and FMT significantly enhanced the expression of Keratin (KRT) 16 in PM stimulated HaCaT cells. PM increased p53 and Bax expression as well as the subsequent cleavage of caspase 3 and PARP in HaCaT cells, while this was inhibited by AR and FMT treatment. In vitro studies using the PM stimulated 3D human skin reconstructed model revealed that AR and FMT increased the expression of KRT 16 and KRT 17. Histological examination of the 3D human skin reconstructed model showed that AR and FMT up-regulated the expression of Ki67, but down-regulated the expression of cleaved caspase 3. Both AR and FMT significantly inhibited phosphorylation of ERK, but not JNK and p38 MAPK in PM stimulated HaCaT cells. CONCLUSIONS: These results suggest that AR and FMT act as anti-pollution agents and alleviate PM induced skin barrier defects through regulation of apoptosis and proliferation in keratinocytes.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Isoflavonas/farmacologia , Queratinócitos/efeitos dos fármacos , Material Particulado/toxicidade , Substâncias Protetoras/farmacologia , Pele/efeitos dos fármacos , Emissões de Veículos/toxicidade , Apoptose/efeitos dos fármacos , Astragalus propinquus , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Técnicas In Vitro , Queratinócitos/metabolismo , Fosforilação/efeitos dos fármacos , Pele/metabolismo
6.
Phytomedicine ; 47: 48-57, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30166108

RESUMO

BACKGROUND: The traditional herbal formula, Dang-Gui-Liu-Huang Tang (DGLHT) has been previously shown to inhibit T lymphocyte proliferation and suppress dendritic cell function. Hypothesis/Purpose: To assess the therapeutic value of DGLHT for the treatment of psoriasis, a Th1 and/or Th17 cell-mediated inflammatory skin disease, and to investigate the underlying molecular mechanisms. METHODS: An in vivo mouse model of imiquimod (IMQ)-induced psoriasis-like inflammation was used to investigate the effect of DGLHT. The anti-inflammatory effects of an ethanolic extract of DGLHT (DGLHT-E) and the mechanism responsible were examined in an in vitro model using IL-1α, IL-17A, IL-22, oncostatin M, plus TNF-α (M5) stimulated HaCaT cells. The anti-proliferative effect of DGLHT-E was examined by analyzing the expression levels of K16, K17 and Ki67 in IL-22 stimulated HaCaT cells. RESULTS: Topical application of 1% DGLHT-E significantly reduced psoriasis-like symptoms including scaling and epidermal hyperplasia in IMQ-treated mice. Immunohistochemical studies showed that DGLHT-E exerted potent anti-inflammatory effects by inhibiting IL-22 production in local skin lesions. DGLHT-E also attenuated the productions of CXCL10 and CCL20 in M5-stimulated HaCaT cells by suppressing the ERK1/2, JNK and STAT3 signaling pathways. Furthermore, berberine hydrochloride, a primary constituent of DGLHT-E inhibited the expressions of the proliferation markers K16 and K17 in IL-22 stimulated HaCaT cells. CONCLUSION: These results suggested that DGLHT-E offers a possible treatment for psoriasis, and that berberine hydrochloride might be a useful component of ointment-based treatments for psoriatic lesions.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Inflamação/tratamento farmacológico , Psoríase/tratamento farmacológico , Administração Cutânea , Aminoquinolinas , Angelica sinensis , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Imiquimode , Inflamação/induzido quimicamente , Interleucinas , Queratinócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Psoríase/induzido quimicamente , Pele/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA