RESUMO
Life inside ant colonies is orchestrated with diverse pheromones, but it is not clear how ants perceive these social signals. It has been proposed that pheromone perception in ants evolved via expansions in the numbers of odorant receptors (ORs) and antennal lobe glomeruli. Here, we generate the first mutant lines in the clonal raider ant, Ooceraea biroi, by disrupting orco, a gene required for the function of all ORs. We find that orco mutants exhibit severe deficiencies in social behavior and fitness, suggesting they are unable to perceive pheromones. Surprisingly, unlike in Drosophila melanogaster, orco mutant ants also lack most of the â¼500 antennal lobe glomeruli found in wild-type ants. These results illustrate that ORs are essential for ant social organization and raise the possibility that, similar to mammals, receptor function is required for the development and/or maintenance of the highly complex olfactory processing areas in the ant brain. VIDEO ABSTRACT.
Assuntos
Formigas/genética , Formigas/fisiologia , Proteínas de Insetos/metabolismo , Receptores Odorantes/metabolismo , Animais , Antenas de Artrópodes/citologia , Antenas de Artrópodes/fisiologia , Proteínas de Insetos/genética , Mutagênese , Mutação , Odorantes , Receptores Odorantes/genética , Comportamento SocialRESUMO
Transposable elements (TEs) are mobile DNA sequences that colonize genomes and threaten genome integrity. As a result, several mechanisms appear to have emerged during eukaryotic evolution to suppress TE activity. However, TEs are ubiquitous and account for a prominent fraction of most eukaryotic genomes. We argue that the evolutionary success of TEs cannot be explained solely by evasion from host control mechanisms. Rather, some TEs have evolved commensal and even mutualistic strategies that mitigate the cost of their propagation. These coevolutionary processes promote the emergence of complex cellular activities, which in turn pave the way for cooption of TE sequences for organismal function.
Assuntos
Evolução Biológica , Elementos de DNA Transponíveis/fisiologia , Eucariotos/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Adaptação Fisiológica/genética , Animais , Elementos de DNA Transponíveis/genética , Eucariotos/genética , Genoma/genética , HumanosRESUMO
Cys2-His2 zinc finger genes (ZNFs) form the largest family of transcription factors in metazoans. ZNF evolution is highly dynamic and characterized by the rapid expansion and contraction of numerous subfamilies across the animal phylogeny. The forces and mechanisms underlying rapid ZNF evolution remain poorly understood, but there is growing evidence that, in tetrapods, the targeting and repression of lineage-specific transposable elements (TEs) plays a critical role in the evolution of the Krüppel-associated box ZNF (KZNF) subfamily. Currently, it is unknown whether this function and coevolutionary relationship is unique to KZNFs or is a broader feature of metazoan ZNFs. Here, we present evidence that genomic conflict with TEs has been a central driver of the diversification of ZNFs in animals. Sampling from 3221 genome assemblies, we show that the copy number of retroelements correlates with that of ZNFs across at least 750 million years of metazoan evolution. Using computational predictions, we show that ZNFs preferentially bind TEs in diverse animal species. We further investigate the largest ZNF subfamily found in cyprinid fish, which is characterized by a conserved sequence we dubbed the fish N-terminal zinc finger-associated (FiNZ) domain. Zebrafish possess approximately 700 FiNZ-ZNFs, many of which are evolving adaptively under positive selection. Like mammalian KZNFs, most zebrafish FiNZ-ZNFs are expressed at the onset of zygotic genome activation, and blocking their translation using morpholinos during early embryogenesis results in derepression of transcriptionally active TEs. Together, these data suggest that ZNF diversification has been intimately connected to TE expansion throughout animal evolution.
Assuntos
Elementos de DNA Transponíveis , Peixe-Zebra , Animais , Elementos de DNA Transponíveis/genética , Peixe-Zebra/genética , Dedos de Zinco/genética , Fatores de Transcrição/genética , Mamíferos/genética , Evolução MolecularRESUMO
There is considerable interest in understanding the effect of transposable elements (TEs) on embryonic development. Studies in humans and mice are limited by the difficulty of working with mammalian embryos and by the relative scarcity of active TEs in these organisms. The zebrafish is an outstanding model for the study of vertebrate development, and over half of its genome consists of diverse TEs. However, zebrafish TEs remain poorly characterized. Here we describe the demography and genomic distribution of zebrafish TEs and their expression throughout embryogenesis using bulk and single-cell RNA sequencing data. These results reveal a highly dynamic genomic ecosystem comprising nearly 2000 distinct TE families, which vary in copy number by four orders of magnitude and span a wide range of ages. Longer retroelements tend to be retained in intergenic regions, whereas short interspersed nuclear elements (SINEs) and DNA transposons are more frequently found nearby or within genes. Locus-specific mapping of TE expression reveals extensive TE transcription during development. Although two-thirds of TE transcripts are likely driven by nearby gene promoters, we still observe stage- and tissue-specific expression patterns in self-regulated TEs. Long terminal repeat (LTR) retroelements are most transcriptionally active immediately following zygotic genome activation, whereas DNA transposons are enriched among transcripts expressed in later stages of development. Single-cell analysis reveals several endogenous retroviruses expressed in specific somatic cell lineages. Overall, our study provides a valuable resource for using zebrafish as a model to study the impact of TEs on vertebrate development.
Assuntos
Elementos de DNA Transponíveis , Peixe-Zebra , Animais , Elementos de DNA Transponíveis/genética , Ecossistema , Genômica/métodos , Humanos , Mamíferos/genética , Camundongos , Retroelementos/genética , Peixe-Zebra/genéticaRESUMO
Mechanical phenotyping has been widely employed for single-cell analysis over recent years. However, most previous works on characterizing the cellular mechanical properties measured only a single parameter from one image. In this paper, the quasi-real-time multiparameter analysis of cell mechanical properties was realized using high-throughput adjustable deformability cytometry. We first extracted 12 deformability parameters from the cell contours. Then, the machine learning for cell identification was performed to preliminarily verify the rationality of multiparameter mechanical phenotyping. The experiments on characterizing cells after cytoskeletal modification verified that multiple parameters extracted from the cell contours contributed to an identification accuracy of over 80%. Through continuous frame analysis of the cell deformation process, we found that temporal variation and an average level of parameters were correlated with cell type. To achieve quasi-real-time and high-precision multiplex-type cell detection, we constructed a back propagation (BP) neural network model to complete the fast identification of four cell lines. The multiparameter detection method based on time series achieved cell detection with an accuracy of over 90%. To solve the challenges of cell rarity and data lacking for clinical samples, based on the developed BP neural network model, the transfer learning method was used for the identification of three different clinical samples, and finally, a high identification accuracy of approximately 95% was achieved.
Assuntos
Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Redes Neurais de Computação , Técnicas Analíticas Microfluídicas/instrumentação , Citometria de Fluxo/métodos , Fenótipo , Ensaios de Triagem em Larga Escala/métodos , Aprendizado de Máquina , Dispositivos Lab-On-A-ChipRESUMO
Previous on-chip technologies for characterizing the cellular mechanical properties often suffer from a low throughput and limited sensitivity. Herein, an inertial multi-force deformability cytometry (IMFDC) is developed for high-throughput, high-accuracy, and high-applicability tumor cell mechanotyping. Three different deformations, including shear deformations and stretch deformations under different forces, are integrated with the IMFDC. The 3D inertial focusing of cells enables the cells to deform by an identical fluid flow, and 10 parameters, such as cell area, perimeter, deformability, roundness, and rectangle deformability, are obtained in three deformations. The IMFDC is able to evaluate the deformability of different cells that are sensitive to different forces on a single chip, demonstrating the high applicability of the IMFDC in analyzing different cell lines. In identifying cell types, the three deformations exhibit different mechanical responses to cells with different sizes and deformability. A discrimination accuracy of ≈93% for both MDA-MB-231 and MCF-10A cells and a throughput of ≈500 cells s-1 can be achieved using the multiple-parameters-based machine learning model. Finally, the mechanical properties of metastatic tumor cells in pleural and peritoneal effusions are characterized, enabling the practical application of the IMFDC in clinical cancer diagnosis.
Assuntos
Técnicas Analíticas Microfluídicas , Neoplasias , Humanos , Fenômenos Mecânicos , Citometria de FluxoRESUMO
BACKGROUND: T cells play a pivotal role in chemotherapy-triggered anti-tumor effects. Emerging evidence underscores the link between impaired anti-tumor immune responses and resistance to paclitaxel therapy in triple-negative breast cancer (TNBC). Tumor-related endothelial cells (ECs) have potential immunoregulatory activity. However, how ECs regulate T cell activity during TNBC chemotherapy remains poorly understood. METHODS: Single-cell analysis of ECs in patients with TNBC receiving paclitaxel therapy was performed using an accessible single-cell RNA sequencing (scRNA-seq) dataset to identify key EC subtypes and their immune characteristics. An integrated analysis of a tumor-bearing mouse model, immunofluorescence, and a spatial transcriptome dataset revealed the spatial relationship between ECs, especially Tumor necrosis factor receptor (TNFR) 2+ ECs, and CD8+ T cells. RNA sequencing, CD8+ T cell proliferation assays, flow cytometry, and bioinformatic analyses were performed to explore the immunosuppressive function of TNFR2 in ECs. The downstream metabolic mechanism of TNFR2 was further investigated using RNA sequencing, cellular glycolysis assays, and western blotting. RESULTS: In this study, we identified an immunoregulatory EC subtype, characterized by enhanced TNFR2 expression in non-responders. By a mouse model of TNBC, we revealed a dynamic reduction in the proportion of the CD8+ T cell-contacting tumor vessels that could co-localize spatially with CD8+ T cells during chemotherapy and an increased expression of TNFR2 by ECs. TNFR2 suppresses glycolytic activity in ECs by activating NF-κB signaling in vitro. Tuning endothelial glycolysis enhances programmed death-ligand (PD-L) 1-dependent inhibitory capacity, thereby inducing CD8+ T cell suppression. In addition, TNFR2+ ECs showed a greater spatial affinity for exhausted CD8+ T cells than for non-exhausted CD8+ T cells. TNFR2 blockade restores impaired anti-tumor immunity in vivo, leading to the loss of PD-L1 expression by ECs and enhancement of CD8+ T cell infiltration into the tumors. CONCLUSIONS: These findings reveal the suppression of CD8+ T cells by ECs in chemoresistance and indicate the critical role of TNFR2 in driving the immunosuppressive capacity of ECs via tuning glycolysis. Targeting endothelial TNFR2 may serve as a potent strategy for treating TNBC with paclitaxel.
Assuntos
Linfócitos T CD8-Positivos , Resistencia a Medicamentos Antineoplásicos , Células Endoteliais , Glicólise , Receptores Tipo II do Fator de Necrose Tumoral , Neoplasias de Mama Triplo Negativas , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Glicólise/efeitos dos fármacos , Animais , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Feminino , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Camundongos , Transdução de Sinais/efeitos dos fármacosRESUMO
A structured double-period CsI scintillation screen was successfully developed to improve its detection efficiency based on an oxidized silicon micropore array template with a period value on the order of micro-scale. The structure comprises a main structure along with a sub-structure. The main structure with a period of 8â µm was arranged in a square array consisting of square columnar scintillator units. The micropore walls between the main structure units were purposely fabricated from a SiO2-Si-SiO2 layered structure. The pore walls in commonly used single-structure with a period of 4â µm use the same layered structure composition to obtain a fair comparison. The thickness of both Si and the SiO2 layers was around 0.4â µm. The unique feature of the double structure lies in the even separation of each unit within the main structure into four square columnar scintillator sub-units. These four sub-units within each sub-structure were isolated solely by SiO2 layers with a thickness of approximately 0.8â µm. As a result, the X-ray-induced optical luminescence intensity of the double-structure screen exhibited a 31% increase compared to the corresponding single-structure scintillation screen. In X-ray imaging, a spatial resolution of 109 lp/mm was achieved, which closely matched the results obtained with the single-structure CsI screen. Furthermore, the detective quantum efficiency also displayed a notable improvement.
RESUMO
Herein a catalyst-free solvent-controlled method for the divergent synthesis of spirocyclopropyl and spiropyrazoline oxindoles from 3-ylideneoxindoles and ethyl diazoacetate was developed. With ClCH2CH2Cl as the solvent, spirocyclopropyl oxindoles were obtained in moderate to excellent yields, whereas the use of MeOH as solvent afforded spiropyrazoline oxindoles in moderate to good yields. The readily available substrates, simple operation and various product transformations further highlighted the utility of this method.
RESUMO
Penicilloneines A (1) and B (2) are the first reported quinolone-citrinin hybrids. They were isolated from the starfish-derived fungus Penicillium sp. GGF16-1-2, and their structures were elucidated using spectroscopic, chemical, computational, and single-crystal X-ray diffraction methods. Penicilloneines A (1) and B (2) share a common 4-hydroxy-1-methyl-2(1H)-quinolone unit; however, they differ in terms of citrinin moieties, and these two units are linked via a methylene bridge. Penicilloneines A (1) and B (2) exhibited antifungal activities against Colletotrichum gloeosporioides, with lethal concentration 50 values of 0.02 and 1.51 µg/mL, respectively. A mechanistic study revealed that 1 could inhibit cell growth and promote cell vacuolization and consequent disruption of the fungal cell walls via upregulating nutrient-related hydrolase genes, including putative hydrolase, acetylcholinesterase, glycosyl hydrolase, leucine aminopeptidase, lipase, and beta-galactosidase, and downregulating their synthase genes 3-carboxymuconate cyclase, pyruvate decarboxylase, phosphoketolase, and oxalate decarboxylase.
Assuntos
Antifúngicos , Citrinina , Colletotrichum , Penicillium , Quinolonas , Penicillium/química , Colletotrichum/efeitos dos fármacos , Quinolonas/farmacologia , Quinolonas/química , Quinolonas/isolamento & purificação , Estrutura Molecular , Animais , Citrinina/farmacologia , Citrinina/química , Citrinina/isolamento & purificação , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Testes de Sensibilidade MicrobianaRESUMO
Tumor-induced lymphangiogenesis promotes the formation of new lymphatic vessels, contributing to lymph nodes (LNs) metastasis of tumor cells in both mice and humans. Vessel sprouting appears to be a critical step in this process. However, how lymphatic vessels sprout during tumor lymphangiogenesis is not well-established. Here, we report that S100A4 expressed in lymphatic endothelial cells (LECs) promotes lymphatic vessel sprouting in a growing tumor by regulating glycolysis. In mice, the loss of S100A4 in a whole body (S100A4-/-), or specifically in LECs (S100A4ΔLYVE1) leads to impaired tumor lymphangiogenesis and disrupted metastasis of tumor cells to sentinel LNs. Using a 3D spheroid sprouting assay, we found that S100A4 in LECs was required for the lymphatic vessel sprouting. Further investigations revealed that S100A4 was essential for the position and motility of tip cells, where it activated AMPK-dependent glycolysis during lymphatic sprouting. In addition, the expression of S100A4 in LECs was upregulated under hypoxic conditions. These results suggest that S100A4 is a novel regulator of tumor-induced lymphangiogenesis. Targeting S100A4 in LECs may be a potential therapeutic strategy for lymphatic tumor metastasis.
Assuntos
Células Endoteliais , Vasos Linfáticos , Camundongos , Humanos , Animais , Células Endoteliais/metabolismo , Vasos Linfáticos/metabolismo , Linfangiogênese/fisiologia , Metástase Linfática/patologia , Proteína A4 de Ligação a Cálcio da Família S100/genética , Proteína A4 de Ligação a Cálcio da Família S100/metabolismoRESUMO
Progressive loss of effector functions, especially IFN-γ secreting capability, in effector memory CD8+ T (CD8+ TEM ) cells plays a crucial role in asthma worsening. However, the mechanisms of CD8+ TEM cell dysfunction remain elusive. Here, we report that S100A4 drives CD8+ TEM cell dysfunction, impairing their protective memory response and promoting asthma worsening in an ovalbumin (OVA)-induced asthmatic murine model. We find that CD8+ TEM cells contain two subsets based on S100A4 expression. S100A4+ subsets exhibit dysfunctional effector phenotypes with increased proliferative capability, whereas S100A4- subsets retain effector function but are more inclined to apoptosis, giving rise to a dysfunctional CD8+ TEM cell pool. Mechanistically, S100A4 upregulation of mitochondrial metabolism results in a decrease of acetyl-CoA levels, which impair the transcription of effector genes, especially ifn-γ, facilitating cell survival, tolerance, and memory potential. Our findings thus reveal general insights into how S100A4+ CD8+ TEM cells reprogram into dysfunctional and less protective phenotypes to aggravate asthma.
Assuntos
Asma , Linfócitos T CD8-Positivos , Animais , Asma/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Tolerância Imunológica , Memória Imunológica/genética , Interferon gama/metabolismo , Camundongos , Ovalbumina/metabolismoRESUMO
BACKGROUND: The objective of this study was to develop a model combining ultrasound (US) and clinicopathological characteristics to predict the pathologic response to neoadjuvant chemotherapy (NACT) in human epidermal growth factor receptor 2 (HER2)-positive breast cancer. MATERIALS AND METHODS: This is a retrospective study that included 248 patients with HER2-positive breast cancer who underwent NACT from March 2018 to March 2022. US and clinicopathological characteristics were collected from all patients in this study, and characteristics obtained using univariate analysis at p < 0.1 were subjected to multivariate analysis and then the conventional US and clinicopathological characteristics independently associated with pathologic complete response (pCR) from the analysis were used to develop US models, clinicopathological models, and their combined models by the area under the receiver operating characteristic (ROC) curve (AUC), accuracy, sensitivity, and specificity to assess their predictive efficacy. RESULTS: The combined model had an AUC of 0.808, a sensitivity of 88.72%, a specificity of 60.87%, and an accuracy of 75.81% in predicting pCR of HER2-positive breast cancer after NACT, which was significantly better than the clinicopathological model (AUC = 0.656) and the US model (AUC = 0.769). In addition, six characteristics were screened as independent predictors, namely the Clinical T stage, Clinical N stage, PR status, posterior acoustic, margin, and calcification. CONCLUSION: The conventional US combined with clinicopathological characteristics to construct a combined model has a good diagnostic effect in predicting pCR in HER2-positive breast cancer and is expected to be a useful tool to assist clinicians in effectively determining the efficacy of NACT in HER2-positive breast cancer patients.
Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Humanos , Feminino , Estudos de Casos e Controles , Estudos Retrospectivos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , UltrassonografiaRESUMO
Structured scintillation screen based on oxidized Si micropore array template can effectively improve the spatial resolution of X-ray imaging. The purpose of this study is to investigate the effect of SiO2 layer thickness on the light guide and X-ray imaging performance of CsI scintillation screen when the structural period is as small as microns. Cylindrical micropores with a period of 4.3â µm, an average diameter of 3.3â µm and a depth of about 40â µm were prepared in Si wafers. SiO2 layer was formed on the pore walls after thermal oxidation. Increasing SiO2 layer thickness would be beneficial to the propagation of scintillation light along the cylindrical channels. What was not previously anticipated was that the pore size gradually shrank as the SiO2 layer thickened. The pore shrinkage would reduce the filling rate of CsI in the templates and thus would reduce the production of scintillation light. The structured CsI scintillation screens with different SiO2 layer thicknesses were fabricated by filling CsI scintillator into the oxidized silicon micropore array template. The morphology, crystallinity, X-ray excited optical luminescence, and X-ray imaging performance of the screens were studied. The results show that the spatial resolutions of X-ray images measured using the structured CsI scintillation screens with different SiO2 layer thicknesses are close to each other, and they are all about 110 lp/mm. However, the X-ray excited optical luminescence of the screen and detective quantum efficiency of X-ray imaging vary with the thickness of the SiO2 layer. The optimal thickness is about 350â nm.
RESUMO
BACKGROUND: Uric acid is a natural antioxidant and it has been shown that low levels of uric acid may be a risk factor for the development of Parkinson's disease. We aimed to investigate the relationship between uric acid and improvement of motor symptoms in patients with Parkinson's disease after subthalamic nucleus deep brain stimulation. METHODS: We analyzed the correlation between serum uric acid levels in 64 patients with Parkinson's disease and the rate of improvement of motor symptoms 2 years after subthalamic nucleus deep brain stimulation. RESULTS: A non-linear correlation was observed between uric acid levels and the rate of motor symptom improvement after subthalamic nucleus deep brain stimulation, during both the drug-off and drug-on periods. CONCLUSIONS: Uric acid is positively associated with the rate of motor symptom improvement in subthalamic nucleus deep brain stimulation within a certain range.
RESUMO
OBJECTIVES: The incidence of multiple primary lung cancer (MPLC) has increased in recent years. The risk factors of MPLC are not well studied, especially in the Asian population. This case-control study investigated the association between a family history of cancer and MPLC risk. METHODS: We used data from people who surgically confirmed MPLC with at least 2 nodes of Fujian Medical University Union Hospital and matched 1:2 normal individuals as controls between 2016 and 2017. Information on age, sex, lifestyle, personal history, and family history of cancer was collected using a self-administered questionnaire, and odds ratios (OR) were estimated using unconditional logistic regression. RESULTS: We included 2 104 patients. In total, 321 patients with histologically confirmed MPLC and 642 healthy controls were studied. The significantly higher ratio of current smokers was observed for the cases than the controls (54.1% vs. 30.0%). A family history of LC in first-degree relatives of the cases reported a significantly higher proportion than in the controls (15.3% vs. 8.6%). Family history of all cancers and LC significantly increased the risk of MPLC (OR = 1.64, P = 0.009 and OR = 2.59, P = 0.000, respectively). The multivariate analysis identified a significantly increased risk of MPLC (OR = 2.45, P = 0.000) associated with parents and siblings influenced by LC history. The younger age (aged < 55 years) of LC cases at diagnosis exhibited a significantly increased risk of MPLC (OR = 2.39, P = 0.000). A significant association with a family history of LC was found for male squamous carcinoma and male adenocarcinoma (OR = 1.59, p = 0.037 and OR = 1.64, p = 0.032, respectively). A positive association with LC history was only observed for female adenocarcinoma (OR = 2.23, p = 0.028). The risk of MPLC was not significantly associated with A family history of cancers in non-smokers (OR = 0.91, P = 0.236). Ever-smokers with a positive family history of cancer or LC had a significantly elevated risk of MPLC (OR = 4.01, P = 0.000 and OR = 6.49, P = 0.000, respectively). We also observed a very elevated risk for smokers with no family history (OR = 3.49, P = 0.000). Such a positive association was also observed in ever-smokers with no family history of LC (OR = 3.55, P = 0.000). Adenocarcinoma in females was prevalent and significantly associated with a family history of LC in risk of MPLC compared with other histologic subtypes. CONCLUSIONS: Our findings suggest an association between a family history of LC and MPLC risk among an Asian population. Smoking status and family history of LC have a synergistic effect on MPLC. These findings indicate that MPLC exhibits familiar aggregation and that inherited genetic susceptibility may contribute to the development of MPLC.
Assuntos
Adenocarcinoma , Neoplasias Pulmonares , Neoplasias Primárias Múltiplas , Humanos , Masculino , Feminino , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Estudos de Casos e Controles , Fumar/epidemiologia , Fumar/efeitos adversos , Fatores de Risco , Adenocarcinoma/complicaçõesRESUMO
Rubia cordifolia L. (Rubiaceae), one of the traditional anti-rheumatic herbal medicines in China, has been used to treat rheumatoid arthritis (RA) since ancient times. Purpurin, an active compound of Rubia cordifolia L., has been identified in previous studies and exerts antibacterial, antigenotoxic, anticancer, and antioxidant effects. However, the efficacy and the underlying mechanism of purpurin to alleviate RA are unclear. In this study, the effect of purpurin on inflammation was investigated using macrophage RAW264.7 inflammatory cells, induced by lipopolysaccharide (LPS), and adjuvant-induced arthritis (AIA) rat was established to explore the effect of purpurin on joint damage and immune disorders; the network pharmacology and molecular docking were integrated to dig out the prospective target. Purpurin showed significantly anti-inflammatory effect by reducing the content of IL-6, TNF-α, and IL-1ß and increasing IL-10. Besides, purpurin obviously improved joint injury and hypotoxicity in the liver and spleen and regulated the level of FOXP3 and CD4+/CD8+. Furthermore, purpurin reduced the MMP3 content of AIA rats. Network pharmacology and molecular docking also suggested that MMP3 may be the key target of purpurin against RA. The results of this study strongly indicated that purpurin has a potential effect on anti-RA.
Assuntos
Antirreumáticos , Artrite Experimental , Artrite Reumatoide , Ratos , Animais , Metaloproteinase 3 da Matriz , Simulação de Acoplamento Molecular , Inflamação/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Artrite Experimental/tratamento farmacológico , Antirreumáticos/farmacologiaRESUMO
High-throughput three-dimensional (3D) focusing of cells is the key prerequisite for enabling accurate microfluidic cell detection and analysis. In this work, we develop a high-aspect-ratio asymmetric serpentine (HARAS) microchannel for single-line inertial focusing of particles and cells at the 3D center of the channel. The mechanism of 3D focusing is explored by numerical simulation, and the focusing performances of differently sized particles are characterized experimentally at different flow rates. The results demonstrate the outstanding 3D single-line focusing capability of our HARAS microchannel. In addition, the phenomena of size-independent and position-controllable focusing over wide flow rates are observed. Finally, the applicability of our HARAS microchannel for processing real biological cells is validated by the 3D single-line focusing of A549 cells and MCF-7 cells. Our work overcomes the issue of off-centered focusing of most previous works and provides new insights into the 3D focusing in inertial microfluidics. The proposed HARAS microchannel is extremely easy for mass production and may provide a stable, high-throughput, and position-controllable scheme for subsequent single-cell detection and analysis.
Assuntos
Técnicas Analíticas Microfluídicas , Técnicas Analíticas Microfluídicas/métodos , Microfluídica , Simulação por ComputadorRESUMO
To obtain better light guidance and optical isolation effects under a limited microcolumn wall thickness, the influence of the thickness of a SiO2 reflective layer on the performance of a structured CsI(Tl) scintillation screen based on an oxidized Si micropore array template in X-ray imaging was simulated. The results show that the SiO2 reflective layer should maintain a certain thickness to achieve good light-guide performance. However, if the template is entirely composed of SiO2, the light isolation performance of the microcolumn wall will be slightly worse. The results provide a basis for optimizing the thickness of SiO2 reflective layer.
RESUMO
BACKGROUND: Uric acid is a natural antioxidant, and low levels of uric acid have been reported to be a potential risk factor in the development of nervous system diseases. Herein, we investigated whether uric acid levels play a role in trigeminal neuralgia (TN). METHODS: We conducted a cohort study to compare the serum uric acid levels of patients with TN and healthy controls. We also analyzed the impact of uric acid levels on the risk of TN and symptom severity. RESULTS: In comparison to control participants (n = 133), uric acid levels were remarkably decreased in patients with TN (n = 181). Uric acid (OR = 0.989; 95% CI 0.986-0.993; P < 0.001) was also determined as a protective factor against TN based on multivariate logistic regression models. Furthermore, nonlinear relationships between serum uric acid levels and TN incidence rate and between that and the Barrow Neurological Institute (BNI) grading were observed. CONCLUSIONS: Our study is the first to show a relationship between serum uric acid levels and TN. Specifically, low serum uric acid levels were associated with an increased risk of TN and more severe clinical symptoms. We expect that these findings will provide new insights into the prevention and treatment of TN.