Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 320(6): C1141-C1152, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33950697

RESUMO

A patterned spread of proteinopathy represents a common characteristic of many neurodegenerative diseases. In Parkinson's disease (PD), misfolded forms of α-synuclein proteins accumulate in hallmark pathological inclusions termed Lewy bodies and Lewy neurites. Such protein aggregates seem to affect selectively vulnerable neuronal populations in the substantia nigra and to propagate within interconnected neuronal networks. Research findings suggest that these proteinopathic inclusions are present at very early time points in disease development, even before clear behavioral symptoms of dysfunction arise. In this study, we investigate the early pathophysiology developing after induced formation of such PD-related α-synuclein inclusions in a physiologically relevant in vitro setup using engineered human neural networks. We monitor the neural network activity using multielectrode arrays (MEAs) for a period of 3 wk following proteinopathy induction to identify associated changes in network function, with a special emphasis on the measure of network criticality. Self-organized criticality represents the critical point between resilience against perturbation and adaptational flexibility, which appears to be a functional trait in self-organizing neural networks, both in vitro and in vivo. We show that although developing pathology at early onset is not clearly manifest in standard measurements of network function, it may be discerned by investigating differences in network criticality states.


Assuntos
Rede Nervosa/metabolismo , Neurônios/metabolismo , alfa-Sinucleína/metabolismo , Células Cultivadas , Humanos , Corpos de Inclusão/metabolismo , Corpos de Lewy/metabolismo , Doença de Parkinson/metabolismo
2.
Front Cell Neurosci ; 18: 1366098, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644975

RESUMO

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been widely linked to Parkinson's disease, where the G2019S variant has been shown to contribute uniquely to both familial and sporadic forms of the disease. LRRK2-related mutations have been extensively studied, yet the wide variety of cellular and network events related to these mutations remain poorly understood. The advancement and availability of tools for neural engineering now enable modeling of selected pathological aspects of neurodegenerative disease in human neural networks in vitro. Our study revealed distinct pathology associated dynamics in engineered human cortical neural networks carrying the LRRK2 G2019S mutation compared to healthy isogenic control neural networks. The neurons carrying the LRRK2 G2019S mutation self-organized into networks with aberrant morphology and mitochondrial dynamics, affecting emerging structure-function relationships both at the micro-and mesoscale. Taken together, the findings of our study points toward an overall heightened metabolic demand in networks carrying the LRRK2 G2019S mutation, as well as a resilience to change in response to perturbation, compared to healthy isogenic controls.

3.
Front Robot AI ; 9: 1007547, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313249

RESUMO

In this work, we argue that the search for Artificial General Intelligence should start from a much lower level than human-level intelligence. The circumstances of intelligent behavior in nature resulted from an organism interacting with its surrounding environment, which could change over time and exert pressure on the organism to allow for learning of new behaviors or environment models. Our hypothesis is that learning occurs through interpreting sensory feedback when an agent acts in an environment. For that to happen, a body and a reactive environment are needed. We evaluate a method to evolve a biologically-inspired artificial neural network that learns from environment reactions named Neuroevolution of Artificial General Intelligence, a framework for low-level artificial general intelligence. This method allows the evolutionary complexification of a randomly-initialized spiking neural network with adaptive synapses, which controls agents instantiated in mutable environments. Such a configuration allows us to benchmark the adaptivity and generality of the controllers. The chosen tasks in the mutable environments are food foraging, emulation of logic gates, and cart-pole balancing. The three tasks are successfully solved with rather small network topologies and therefore it opens up the possibility of experimenting with more complex tasks and scenarios where curriculum learning is beneficial.

4.
Front Neural Circuits ; 16: 980631, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188125

RESUMO

Cascading activity is commonly observed in complex dynamical systems, including networks of biological neurons, and how these cascades spread through the system is reliant on how the elements of the system are connected and organized. In this work, we studied networks of neurons as they matured over 50 days in vitro and evaluated both their dynamics and their functional connectivity structures by observing their electrophysiological activity using microelectrode array recordings. Correlations were obtained between features of their activity propagation and functional connectivity characteristics to elucidate the interplay between dynamics and structure. The results indicate that in vitro networks maintain a slightly subcritical state by striking a balance between integration and segregation. Our work demonstrates the complementarity of these two approaches-functional connectivity and avalanche dynamics-in studying information propagation in neurons in vitro, which can in turn inform the design and optimization of engineered computational substrates.


Assuntos
Rede Nervosa , Neurônios , Microeletrodos , Rede Nervosa/fisiologia , Neurônios/fisiologia
5.
Front Robot AI ; 8: 673156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222354

RESUMO

The paradigm of voxel-based soft robots has allowed to shift the complexity from the control algorithm to the robot morphology itself. The bodies of voxel-based soft robots are extremely versatile and more adaptable than the one of traditional robots, since they consist of many simple components that can be freely assembled. Nonetheless, it is still not clear which are the factors responsible for the adaptability of the morphology, which we define as the ability to cope with tasks requiring different skills. In this work, we propose a task-agnostic approach for automatically designing adaptable soft robotic morphologies in simulation, based on the concept of criticality. Criticality is a property belonging to dynamical systems close to a phase transition between the ordered and the chaotic regime. Our hypotheses are that 1) morphologies can be optimized for exhibiting critical dynamics and 2) robots with those morphologies are not worse, on a set of different tasks, than robots with handcrafted morphologies. We introduce a measure of criticality in the context of voxel-based soft robots which is based on the concept of avalanche analysis, often used to assess criticality in biological and artificial neural networks. We let the robot morphologies evolve toward criticality by measuring how close is their avalanche distribution to a power law distribution. We then validate the impact of this approach on the actual adaptability by measuring the resulting robots performance on three different tasks designed to require different skills. The validation results confirm that criticality is indeed a good indicator for the adaptability of a soft robotic morphology, and therefore a promising approach for guiding the design of more adaptive voxel-based soft robots.

6.
Front Comput Neurosci ; 15: 611183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643017

RESUMO

It has been hypothesized that the brain optimizes its capacity for computation by self-organizing to a critical point. The dynamical state of criticality is achieved by striking a balance such that activity can effectively spread through the network without overwhelming it and is commonly identified in neuronal networks by observing the behavior of cascades of network activity termed "neuronal avalanches." The dynamic activity that occurs in neuronal networks is closely intertwined with how the elements of the network are connected and how they influence each other's functional activity. In this review, we highlight how studying criticality with a broad perspective that integrates concepts from physics, experimental and theoretical neuroscience, and computer science can provide a greater understanding of the mechanisms that drive networks to criticality and how their disruption may manifest in different disorders. First, integrating graph theory into experimental studies on criticality, as is becoming more common in theoretical and modeling studies, would provide insight into the kinds of network structures that support criticality in networks of biological neurons. Furthermore, plasticity mechanisms play a crucial role in shaping these neural structures, both in terms of homeostatic maintenance and learning. Both network structures and plasticity have been studied fairly extensively in theoretical models, but much work remains to bridge the gap between theoretical and experimental findings. Finally, information theoretical approaches can tie in more concrete evidence of a network's computational capabilities. Approaching neural dynamics with all these facets in mind has the potential to provide a greater understanding of what goes wrong in neural disorders. Criticality analysis therefore holds potential to identify disruptions to healthy dynamics, granted that robust methods and approaches are considered.

7.
Cogn Neurodyn ; 14(5): 657-674, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33014179

RESUMO

Although deep learning has recently increased in popularity, it suffers from various problems including high computational complexity, energy greedy computation, and lack of scalability, to mention a few. In this paper, we investigate an alternative brain-inspired method for data analysis that circumvents the deep learning drawbacks by taking the actual dynamical behavior of biological neural networks into account. For this purpose, we develop a general framework for dynamical systems that can evolve and model a variety of substrates that possess computational capacity. Therefore, dynamical systems can be exploited in the reservoir computing paradigm, i.e., an untrained recurrent nonlinear network with a trained linear readout layer. Moreover, our general framework, called EvoDynamic, is based on an optimized deep neural network library. Hence, generalization and performance can be balanced. The EvoDynamic framework contains three kinds of dynamical systems already implemented, namely cellular automata, random Boolean networks, and echo state networks. The evolution of such systems towards a dynamical behavior, called criticality, is investigated because systems with such behavior may be better suited to do useful computation. The implemented dynamical systems are stochastic and their evolution with genetic algorithm mutates their update rules or network initialization. The obtained results are promising and demonstrate that criticality is achieved. In addition to the presented results, our framework can also be utilized to evolve the dynamical systems connectivity, update and learning rules to improve the quality of the reservoir used for solving computational tasks and physical substrate modeling.

8.
Artif Life ; 22(1): 76-111, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26606469

RESUMO

Evolutionary design targets systems of continuously increasing complexity. Thus, indirect developmental mappings are often a necessity. Varying the amount of genotype information changes the cardinality of the mapping, which in turn affects the developmental process. An open question is how to find the genotype size and representation in which a developmental solution would fit. A restricted pool of genes may not be large enough to encode a solution or may need complex heuristics to find a realistic size. On the other hand, using the whole set of possible regulatory combinations may be intractable. In nature, the genomes of biological organisms are not fixed in size; they slowly evolve and acquire new genes by random gene duplications. Such incremental growth of genome information can be beneficial also in the artificial domain. For an evolutionary and developmental (evo-devo) system based on cellular automata, we investigate an incremental evolutionary growth of genomes without any a priori knowledge on the necessary genotype size. Evolution starts with simple solutions in a low-dimensional space and incrementally increases the genotype complexity by means of gene duplication, allowing the evolution of scalable genomes that are able to adapt genetic information content while compactness and efficiency are retained. The results are consistent when the target phenotypic complexity, the geometry size, and the number of cell states are scaled up.


Assuntos
Evolução Biológica , Duplicação Gênica , Genoma , Fenômenos Biológicos , Evolução Molecular , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA