Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D513-D521, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37962356

RESUMO

In this update paper, we present the latest developments in the OMA browser knowledgebase, which aims to provide high-quality orthology inferences and facilitate the study of gene families, genomes and their evolution. First, we discuss the addition of new species in the database, particularly an expanded representation of prokaryotic species. The OMA browser now offers Ancestral Genome pages and an Ancestral Gene Order viewer, allowing users to explore the evolutionary history and gene content of ancestral genomes. We also introduce a revamped Local Synteny Viewer to compare genomic neighborhoods across both extant and ancestral genomes. Hierarchical Orthologous Groups (HOGs) are now annotated with Gene Ontology annotations, and users can easily perform extant or ancestral GO enrichments. Finally, we recap new tools in the OMA Ecosystem, including OMAmer for proteome mapping, OMArk for proteome quality assessment, OMAMO for model organism selection and Read2Tree for phylogenetic species tree construction from reads. These new features provide exciting opportunities for orthology analysis and comparative genomics. OMA is accessible at https://omabrowser.org.


Assuntos
Bases de Dados Genéticas , Ecossistema , Genoma , Proteoma , Genoma/genética , Filogenia , Sintenia , Internet , Ordem dos Genes/genética
2.
Bioinformatics ; 38(10): 2965-2966, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35561194

RESUMO

SUMMARY: The conservation of pathways and genes across species has allowed scientists to use non-human model organisms to gain a deeper understanding of human biology. However, the use of traditional model systems such as mice, rats and zebrafish is costly, time-consuming and increasingly raises ethical concerns, which highlights the need to search for less complex model organisms. Existing tools only focus on the few well-studied model systems, most of which are complex animals. To address these issues, we have developed Orthologous Matrix and Alternative Model Organism (OMAMO), a software and a web service that provides the user with the best non-complex organism for research into a biological process of interest based on orthologous relationships between human and the species. The outputs provided by OMAMO were supported by a systematic literature review. AVAILABILITY AND IMPLEMENTATION: https://omabrowser.org/omamo/, https://github.com/DessimozLab/omamo. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Peixe-Zebra , Animais , Camundongos , Ratos , Peixe-Zebra/genética
3.
J Pers Med ; 12(10)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36294790

RESUMO

The G protein-coupled receptor Smoothened (Smo) is a central signal transducer of the Hedgehog (Hh) pathway which has been linked to diverse forms of tumours. Stimulated by advancements in structural and functional characterisation, the Smo receptor has been recognised as an important therapeutic target in Hh-driven cancers, and several Smo inhibitors have now been approved for cancer therapy. This receptor is also known to be an oncoprotein itself and its gain-of-function variants have been associated with skin, brain, and liver cancers. According to the COSMIC database, oncogenic mutations of Smo have been identified in various other tumours, although their oncogenic effect remains unknown in these tissues. Drug resistance is a common challenge in cancer therapies targeting Smo, and data analysis shows that healthy individuals also harbour resistance mutations. Based on the importance of Smo in cancer progression and the high incidence of resistance towards Smo inhibitors, this review suggests that detection of Smo variants through tumour profiling could lead to increased precision and improved outcomes of anti-cancer treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA