Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 63(5): 100183, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35181315

RESUMO

Human milk is critical for the survival and development of infants. This source of nutrition contains components that protect against infections while stimulating immune maturation. In cases where the mother's own milk is unavailable, pasteurized donor milk is the preferred option. Although pasteurization has been shown to have minimal impact on the lipid and FA composition before digestion, no correlation has been made between the impact of pasteurization on the FFA composition and the self-assembly of lipids during digestion, which could act as delivery mechanisms for poorly water-soluble components. Pooled nonpasteurized and pasteurized human milk from a single donor was used in this study. The evolving FFA composition during digestion was determined using GC coupled to a flame ionization detector. In vitro digestion coupled to small-angle X-ray scattering was utilized to investigate the influence of different calcium levels, fat content, and the presence of bile salts on the extent of digestion and structural behavior of human milk lipids. Almost complete digestion was achieved when bile salts were added to the systems containing high calcium to milk fat ratio, with similar structural behavior of lipids during digestion of both types of human milk being apparent. In contrast, differences in the colloidal structures were formed during digestion in the absence of bile salt because of a greater amount of FFAs being released from the nonpasteurized than pasteurized milks. This difference in FFAs released from both types of human milk could result in varying nutritional implications for infants.


Assuntos
Leite Humano , Pasteurização , Ácidos e Sais Biliares/análise , Cálcio , Digestão , Humanos , Lactente , Lipídeos/análise , Leite Humano/química
2.
Radiology ; 301(1): 115-122, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34342503

RESUMO

Background Patterns of metastasis in cancer are increasingly relevant to prognostication and treatment planning but have historically been documented by means of autopsy series. Purpose To show the feasibility of using natural language processing (NLP) to gather accurate data from radiology reports for assessing spatial and temporal patterns of metastatic spread in a large patient cohort. Materials and Methods In this retrospective longitudinal study, consecutive patients who underwent CT from July 2009 to April 2019 and whose CT reports followed a departmental structured template were included. Three radiologists manually curated a sample of 2219 reports for the presence or absence of metastases across 13 organs; these manually curated reports were used to develop three NLP models with an 80%-20% split for training and test sets. A separate random sample of 448 manually curated reports was used for validation. Model performance was measured by accuracy, precision, and recall for each organ. The best-performing NLP model was used to generate a final database of metastatic disease across all patients. For each cancer type, statistical descriptive reports were provided by analyzing the frequencies of metastatic disease at the report and patient levels. Results In 91 665 patients (mean age ± standard deviation, 61 years ± 15; 46 939 women), 387 359 reports were labeled. The best-performing NLP model achieved accuracies from 90% to 99% across all organs. Metastases were most frequently reported in abdominopelvic (23.6% of all reports) and thoracic (17.6%) nodes, followed by lungs (14.7%), liver (13.7%), and bones (9.9%). Metastatic disease tropism is distinct among common cancers, with the most common first site being bones in prostate and breast cancers and liver among pancreatic and colorectal cancers. Conclusion Natural language processing may be applied to cancer patients' CT reports to generate a large database of metastatic phenotypes. Such a database could be combined with genomic studies and used to explore prognostic imaging phenotypes with relevance to treatment planning. © RSNA, 2021 Online supplemental material is available for this article.


Assuntos
Gerenciamento de Dados/métodos , Bases de Dados Factuais/estatística & dados numéricos , Registros Eletrônicos de Saúde , Processamento de Linguagem Natural , Neoplasias/epidemiologia , Tomografia Computadorizada por Raios X/métodos , Estudos de Viabilidade , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Reprodutibilidade dos Testes , Estudos Retrospectivos
3.
Cell Tissue Res ; 384(2): 333-352, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33439347

RESUMO

Assessing the role of lactogenic hormones in human mammary gland development is limited due to issues accessing tissue samples and so development of a human in vitro three-dimensional mammosphere model with functions similar to secretory alveoli in the mammary gland can aid to overcome this shortfall. In this study, a mammosphere model has been characterised using human mammary epithelial cells grown on either mouse extracellular matrix or agarose and showed insulin is essential for formation of mammospheres. Insulin was shown to up-regulate extracellular matrix genes. Microarray analysis of these mammospheres revealed an up-regulation of differentiation, cell-cell junctions, and cytoskeleton organisation functions, suggesting mammosphere formation may be regulated through ILK signalling. Comparison of insulin and IGF-1 effects on mammosphere signalling showed that although IGF-1 could induce spherical structures, the cells did not polarise correctly as shown by the absence of up-regulation of polarisation genes and did not induce the expression of milk protein genes. This study demonstrated a major role for insulin in mammary acinar development for secretory differentiation and function indicating the potential for reduced lactational efficiency in women with obesity and gestational diabetes.


Assuntos
Insulina/metabolismo , Glândulas Mamárias Animais/fisiopatologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Feminino , Humanos , Camundongos
4.
Reprod Fertil Dev ; 31(7): 1266-1275, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31014447

RESUMO

Milk is a complex secretion that has an important role in mammalian reproduction. It is only recently that sequencing technologies have allowed the identification and quantification of microRNA (miRNA) in milk of a growing number of mammalian species. This provides a novel window on the study of the evolution and functionality of milk through the comparative analysis of milk miRNA content. Here, milk miRNA sequencing data from five species (one marsupial (tammar wallaby) and four eutherians (human, mouse, cow and pig)) have been retrieved from public depositories and integrated in order to perform a comparison of milk miRNA profiles. The study shows that milk miRNA composition varies widely between species, except for a few miRNAs that are ubiquitously expressed in the milk of all mammals and indicates that milk miRNA secretion has broadly evolved during mammalian evolution. The putative functions of the most abundant milk miRNAs are also discussed.


Assuntos
Lactação/fisiologia , Mamíferos/fisiologia , MicroRNAs/análise , Leite/química , Animais , Evolução Biológica , Feminino , Macropodidae/fisiologia
5.
BMC Genomics ; 19(1): 732, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30290757

RESUMO

BACKGROUND: After a short gestation, marsupials give birth to immature neonates with lungs that are not fully developed and in early life the neonate partially relies on gas exchange through the skin. Therefore, significant lung development occurs after birth in marsupials in contrast to eutherian mammals such as humans and mice where lung development occurs predominantly in the embryo. To explore the mechanisms of marsupial lung development in comparison to eutherians, morphological and gene expression analysis were conducted in the gray short-tailed opossum (Monodelphis domestica). RESULTS: Postnatal lung development of Monodelphis involves three key stages of development: (i) transition from late canalicular to early saccular stages, (ii) saccular and (iii) alveolar stages, similar to developmental stages overlapping the embryonic and perinatal period in eutherians. Differentially expressed genes were identified and correlated with developmental stages. Functional categories included growth factors, extracellular matrix protein (ECMs), transcriptional factors and signalling pathways related to branching morphogenesis, alveologenesis and vascularisation. Comparison with published data on mice highlighted the conserved importance of extracellular matrix remodelling and signalling pathways such as Wnt, Notch, IGF, TGFß, retinoic acid and angiopoietin. The comparison also revealed changes in the mammalian gene expression program associated with the initiation of alveologenesis and birth, pointing to subtle differences between the non-functional embryonic lung of the eutherian mouse and the partially functional developing lung of the marsupial Monodelphis neonates. The data also highlighted a subset of contractile proteins specifically expressed in Monodelphis during and after alveologenesis. CONCLUSION: The results provide insights into marsupial lung development and support the potential of the marsupial model of postnatal development towards better understanding of the evolution of the mammalian bronchioalveolar lung.


Assuntos
Perfilação da Expressão Gênica , Pulmão/embriologia , Monodelphis/crescimento & desenvolvimento , Monodelphis/genética , Organogênese/genética , Animais , Pulmão/fisiologia , Especificidade de Órgãos
6.
Sensors (Basel) ; 18(3)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495600

RESUMO

The aim of this study was to investigate the reliability and concurrent validity of a commercially available Xsens MVN BIOMECH inertial-sensor-based motion capture system during clinically relevant functional activities. A clinician with no prior experience of motion capture technologies and an experienced clinical movement scientist each assessed 26 healthy participants within each of two sessions using a camera-based motion capture system and the MVN BIOMECH system. Participants performed overground walking, squatting, and jumping. Sessions were separated by 4 ± 3 days. Reliability was evaluated using intraclass correlation coefficient and standard error of measurement, and validity was evaluated using the coefficient of multiple correlation and the linear fit method. Day-to-day reliability was generally fair-to-excellent in all three planes for hip, knee, and ankle joint angles in all three tasks. Within-day (between-rater) reliability was fair-to-excellent in all three planes during walking and squatting, and poor-to-high during jumping. Validity was excellent in the sagittal plane for hip, knee, and ankle joint angles in all three tasks and acceptable in frontal and transverse planes in squat and jump activity across joints. Our results suggest that the MVN BIOMECH system can be used by a clinician to quantify lower-limb joint angles in clinically relevant movements.


Assuntos
Movimento , Articulação do Tornozelo , Fenômenos Biomecânicos , Marcha , Humanos , Articulação do Joelho , Amplitude de Movimento Articular , Reprodutibilidade dos Testes
7.
Gen Comp Endocrinol ; 242: 38-48, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26673872

RESUMO

Endocrine regulation of milk protein gene expression in marsupials and eutherians is well studied. However, the evolution of this complex regulation that began with monotremes is unknown. Monotremes represent the oldest lineage of extant mammals and the endocrine regulation of lactation in these mammals has not been investigated. Here we characterised the proximal promoter and hormonal regulation of two platypus milk protein genes, Beta-lactoglobulin (BLG), a whey protein and monotreme lactation protein (MLP), a monotreme specific milk protein, using in vitro reporter assays and a bovine mammary epithelial cell line (BME-UV1). Insulin and dexamethasone alone provided partial induction of MLP, while the combination of insulin, dexamethasone and prolactin was required for maximal induction. Partial induction of BLG was achieved by insulin, dexamethasone and prolactin alone, with maximal induction using all three hormones. Platypus MLP and BLG core promoter regions comprised transcription factor binding sites (e.g. STAT5, NF-1 and C/EBPα) that were conserved in marsupial and eutherian lineages that regulate caseins and whey protein gene expression. Our analysis suggests that insulin, dexamethasone and/or prolactin alone can regulate the platypus MLP and BLG gene expression, unlike those of therian lineage. The induction of platypus milk protein genes by lactogenic hormones suggests they originated before the divergence of marsupial and eutherians.


Assuntos
Lactação/fisiologia , Lactoglobulinas/metabolismo , Ornitorrinco/fisiologia , Animais , Evolução Biológica , Caseínas/genética , Dexametasona/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Insulina/metabolismo , Lactoglobulinas/genética , Prolactina/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
8.
Gen Comp Endocrinol ; 244: 164-177, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27528357

RESUMO

It is now clear that milk has multiple functions; it provides the most appropriate nutrition for growth of the newborn, it delivers a range of bioactives with the potential to stimulate development of the young, it has the capacity to remodel the mammary gland (stimulate growth or signal cell death) and finally milk can provide protection from infection and inflammation when the mammary gland is susceptible to these challenges. There is increasing evidence to support studies using an Australian marsupial, the tammar wallaby (Macropus eugenii), as an interesting and unique model to study milk bioactives. Reproduction in the tammar wallaby is characterized by a short gestation, birth of immature young and a long lactation. All the major milk constituents change substantially and progressively during lactation and these changes have been shown to regulate growth and development of the tammar pouch young and to have roles in mammary gland biology. This review will focus on recent reports examining the control of lactation in the tammar wallaby and the timed delivery of milk bioactivity.


Assuntos
Lactação/fisiologia , Macropodidae/fisiologia , Leite/metabolismo , Animais , Feminino , Leite/química
9.
Funct Integr Genomics ; 16(3): 297-321, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26909879

RESUMO

The molecular processes underlying human milk production and the effects of mastitic infection are largely unknown because of limitations in obtaining tissue samples. Determination of gene expression in normal lactating women would be a significant step toward understanding why some women display poor lactation outcomes. Here, we demonstrate the utility of RNA obtained directly from human milk cells to detect mammary epithelial cell (MEC)-specific gene expression. Milk cell RNA was collected from five time points (24 h prepartum during the colostrum period, midlactation, two involutions, and during a bout of mastitis) in addition to an involution series comprising three time points. Gene expression profiles were determined by use of human Affymetrix arrays. Milk cells collected during milk production showed that the most highly expressed genes were involved in milk synthesis (e.g., CEL, OLAH, FOLR1, BTN1A1, and ARG2), while milk cells collected during involution showed a significant downregulation of milk synthesis genes and activation of involution associated genes (e.g., STAT3, NF-kB, IRF5, and IRF7). Milk cells collected during mastitic infection revealed regulation of a unique set of genes specific to this disease state, while maintaining regulation of milk synthesis genes. Use of conventional epithelial cell markers was used to determine the population of MECs within each sample. This paper is the first to describe the milk cell transcriptome across the human lactation cycle and during mastitic infection, providing valuable insight into gene expression of the human mammary gland.


Assuntos
Lactação/genética , Proteínas do Leite/genética , Leite Humano/metabolismo , RNA/genética , Animais , Apoptose/genética , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Mastite/genética , Mastite/patologia , Proteínas do Leite/biossíntese , Leite Humano/citologia , Gravidez , RNA/biossíntese , RNA/isolamento & purificação , Transdução de Sinais/genética , Transcriptoma/genética
10.
Nanomedicine ; 12(5): 1397-407, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26961467

RESUMO

The local inflammatory environment of the cell promotes the growth of epithelial cancers. Therefore, controlling inflammation locally using a material in a sustained, non-steroidal fashion can effectively kill malignant cells without significant damage to surrounding healthy cells. A promising class of materials for such applications is the nanostructured scaffolds formed by epitope presenting minimalist self-assembled peptides; these are bioactive on a cellular length scale, while presenting as an easily handled hydrogel. Here, we show that the assembly process can distribute an anti-inflammatory polysaccharide, fucoidan, localized to the nanofibers within the scaffold to create a biomaterial for cancer therapy. We show that it supports healthy cells, while inducing apoptosis in cancerous epithelial cells, as demonstrated by the significant down-regulation of gene and protein expression pathways associated with epithelial cancer progression. Our findings highlight an innovative material approach with potential applications in local epithelial cancer immunotherapy and drug delivery.


Assuntos
Apoptose , Citocinas , Alicerces Teciduais , Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Regulação da Expressão Gênica , Humanos , Hidrogéis , Nanofibras , Neoplasias Epiteliais e Glandulares
11.
BMC Dev Biol ; 15: 16, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25888082

RESUMO

BACKGROUND: Marsupials such as the tammar wallaby (M.Eugenii) have a short gestation (29.3 days) and at birth the altricial young resembles a fetus, and the major development occurs postnatally while the young remains in the mother's pouch. The essential functional factors for the maturation of the neonate are provided by the milk which changes in composition progressively throughout lactation (300 days). Morphologically the lungs of tammar pouch young are immature at birth and the majority of their development occurs during the first 100 days of lactation. RESULTS: In this study mouse embryonic lungs (E-12) were cultured in media with tammar skim milk collected at key time points of lactation to identify factors involved in regulating postnatal lung maturation. Remarkably the embryonic lungs showed increased branching morphogenesis and this effect was restricted to milk collected at specific time points between approximately day 40 to 100 lactation. Further analysis to assess lung development showed a significant increase in the expression of marker genes Sp-C, Sp-B, Wnt-7b, BMP4 and Id2 in lung cultures incubated with milk collected at day 60. Similarly, day 60 milk specifically stimulated proliferation and elongation of lung mesenchymal cells that invaded matrigel. In addition, this milk stimulated proliferation of lung epithelium cells on matrigel, and the cells formed 3-dimensional acini with an extended lumen. CONCLUSIONS: This study has clearly demonstrated that tammar wallaby milk collected at specific times in early lactation contains bioactives that may have a significant role in lung maturation of pouch young.


Assuntos
Pulmão/embriologia , Macropodidae , Leite , Animais , Biomarcadores/metabolismo , Expressão Gênica , Técnicas In Vitro , Lactação , Pulmão/metabolismo , Camundongos
12.
J Mammary Gland Biol Neoplasia ; 19(3-4): 289-302, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26115887

RESUMO

The composition of milk includes factors required to provide appropriate nutrition for the growth of the neonate. However, it is now clear that milk has many functions and comprises bioactive molecules that play a central role in regulating developmental processes in the young while providing a protective function for both the suckled young and the mammary gland during the lactation cycle. Identifying these bioactives and their physiological function in eutherians can be difficult and requires extensive screening of milk components that may function to improve well-being and options for prevention and treatment of disease. New animal models with unique reproductive strategies are now becoming increasingly relevant to search for these factors.


Assuntos
Lactação/fisiologia , Mamíferos/fisiologia , MicroRNAs/metabolismo , Proteínas do Leite , Leite Humano/metabolismo , Leite/metabolismo , Animais , Evolução Biológica , Sistema Digestório/crescimento & desenvolvimento , Feminino , Genômica , Humanos , Pulmão/crescimento & desenvolvimento , Marsupiais/fisiologia , Leite/química , Leite/imunologia , Leite Humano/química , Leite Humano/imunologia , Modelos Animais , Monotremados/fisiologia , Peptídeos/metabolismo
13.
Semin Cell Dev Biol ; 23(5): 547-56, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22498725

RESUMO

The role of milk extends beyond simply providing nutrition to the suckled young. Milk has a comprehensive role in programming and regulating growth and development of the suckled young, and provides a number of potential autocrine factors so that the mammary gland functions appropriately during the lactation cycle. This central role of milk is best studied in animal models such as marsupials that have evolved a different lactation strategy to eutherians and allow researchers to more easily identify regulatory mechanisms that are not as readily apparent in eutherian species. For example, the tammar wallaby (Macropus eugenii) has evolved with a unique reproductive strategy of a short gestation, birth of an altricial young and a relatively long lactation during which the mother progressively changes the composition of the major, and many of the minor components of milk. Consequently, in contrast to eutherians, there is a far greater investment in development of the young during lactation and it is likely that many of the signals that regulate development of eutherian embryos in utero are delivered by the milk. This requires the co-ordinated development and function of the mammary gland since inappropriate timing of these signalling events may result in either limited or abnormal development of the young, and potentially a higher incidence of mature onset disease. Milk proteins play a significant role in these processes by providing timely presentation of signalling molecules and antibacterial protection for the young and the mammary gland at times when there is increased susceptibility to infection. This review describes studies exploiting the unique reproductive strategy of the tammar wallaby to investigate the role of several proteins secreted at specific times during the lactation cycle and that are correlated with potential roles in the young and mammary gland. Interestingly, alternative splicing of some milk protein genes has been utilised by the mammary gland to deliver domain-specific functions at specific times during lactation.


Assuntos
Macropodidae/metabolismo , Proteínas do Leite/metabolismo , Animais , Feminino , Humanos , Lactação , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Modelos Biológicos
14.
BMC Genomics ; 15: 1012, 2014 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-25417092

RESUMO

BACKGROUND: Lactation is a key aspect of mammalian evolution for adaptation of various reproductive strategies along different mammalian lineages. Marsupials, such as tammar wallaby, adopted a short gestation and a relatively long lactation cycle, the newborn is immature at birth and significant development occurs postnatally during lactation. Continuous changes of tammar milk composition may contribute to development and immune protection of pouch young. Here, in order to address the putative contribution of newly identified secretory milk miRNA in these processes, high throughput sequencing of miRNAs collected from tammar milk at different time points of lactation was conducted. A comparative analysis was performed to find distribution of miRNA in milk and blood serum of lactating wallaby. RESULTS: Results showed that high levels of miRNA secreted in milk and allowed the identification of differentially expressed milk miRNAs during the lactation cycle as putative markers of mammary gland activity and functional candidate signals to assist growth and timed development of the young. Comparative analysis of miRNA distribution in milk and blood serum suggests that milk miRNAs are primarily expressed from mammary gland rather than transferred from maternal circulating blood, likely through a new putative exosomal secretory pathway. In contrast, highly expressed milk miRNAs could be detected at significantly higher levels in neonate blood serum in comparison to adult blood, suggesting milk miRNAs may be absorbed through the gut of the young. CONCLUSION: The function of miRNA in mammary gland development and secretory activity has been proposed, but results from the current study also support a differential role of milk miRNA in regulation of development in the pouch young, revealing a new potential molecular communication between mother and young during mammalian lactation.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Lactação/genética , Macropodidae/genética , Leite/metabolismo , Animais , Sequência de Bases , Análise por Conglomerados , Exossomos/metabolismo , Feminino , Biblioteca Gênica , MicroRNAs/sangue , MicroRNAs/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Biopolymers ; 102(2): 197-205, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24488709

RESUMO

Nanomaterials are rich in potential, particularly for the formation of scaffolds that mimic the landscape of the host environment of the cell. This niche arises from the spatial organization of a series of biochemical and biomechanical signals. Self-assembling peptides have emerged as an important tool in the development of functional (bio-)nanomaterials; these simple, easily synthesized subunits form structures which present the properties of these larger, more complex systems. Scaffolds based upon these nanofibrous matrices are promising materials for regenerative medicine as part of a new methodology in scaffold design where a "bottom-up" approach is used in order to simulate the native cellular milieu. Importantly, SAPs hold the potential to be bioactive through the presentation of biochemical and biomechanical signals in a context similar to the natural extracellular matrix, making them ideal targets for providing structural and chemical support in a cellular context. Here, we discuss a new methodology for the presentation of biologically relevant epitopes through their effective presentation on the surface of the nanofibers. Here, we demonstrate that these signals have a direct effect on the viability of cells within a three-dimensional matrix as compared with an unfunctionalized, yet mechanically and morphologically similar system.


Assuntos
Técnicas de Cultura de Células/métodos , Peptídeos/farmacologia , Alicerces Teciduais/química , Mama/citologia , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato , Nanopartículas/ultraestrutura , Peptídeos/química , Reologia
16.
Appl Clin Inform ; 15(3): 489-500, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38925539

RESUMO

OBJECTIVES: While clinical practice guidelines recommend that oncologists discuss goals of care with patients who have advanced cancer, it is estimated that less than 20% of individuals admitted to the hospital with high-risk cancers have end-of-life discussions with their providers. While there has been interest in developing models for mortality prediction to trigger such discussions, few studies have compared how such models compare with clinical judgment to determine a patient's mortality risk. METHODS: This study is a prospective analysis of 1,069 solid tumor medical oncology hospital admissions (n = 911 unique patients) from February 7 to June 7, 2022, at Memorial Sloan Kettering Cancer Center. Electronic surveys were sent to hospitalists, advanced practice providers, and medical oncologists the first afternoon following a hospital admission and they were asked to estimate the probability that the patient would die within 45 days. Provider estimates of mortality were compared with those from a predictive model developed using a supervised machine learning methodology, and incorporated routine laboratory, demographic, biometric, and admission data. Area under the receiver operating characteristic curve (AUC), calibration and decision curves were compared between clinician estimates and the model predictions. RESULTS: Within 45 days following hospital admission, 229 (25%) of 911 patients died. The model performed better than the clinician estimates (AUC 0.834 vs. 0.753, p < 0.0001). Integrating clinician predictions with the model's estimates further increased the AUC to 0.853 (p < 0.0001). Clinicians overestimated risk whereas the model was extremely well-calibrated. The model demonstrated net benefit over a wide range of threshold probabilities. CONCLUSION: The inpatient prognosis at admission model is a robust tool to assist clinical providers in evaluating mortality risk, and it has recently been implemented in the electronic medical record at our institution to improve end-of-life care planning for hospitalized cancer patients.


Assuntos
Neoplasias , Humanos , Neoplasias/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , Admissão do Paciente/estatística & dados numéricos , Medição de Risco/métodos , Idoso , Hospitalização/estatística & dados numéricos
17.
BMC Genomics ; 14: 169, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23497009

RESUMO

BACKGROUND: The pigeon crop is specially adapted to produce milk that is fed to newly hatched young. The process of pigeon milk production begins when the germinal cell layer of the crop rapidly proliferates in response to prolactin, which results in a mass of epithelial cells that are sloughed from the crop and regurgitated to the young. We proposed that the evolution of pigeon milk built upon the ability of avian keratinocytes to accumulate intracellular neutral lipids during the cornification of the epidermis. However, this cornification process in the pigeon crop has not been characterised. RESULTS: We identified the epidermal differentiation complex in the draft pigeon genome scaffold and found that, like the chicken, it contained beta-keratin genes. These beta-keratin genes can be classified, based on sequence similarity, into several clusters including feather, scale and claw keratins. The cornified cells of the pigeon crop express several cornification-associated genes including cornulin, S100-A9 and A16-like, transglutaminase 6-like and the pigeon 'lactating' crop-specific annexin cp35. Beta-keratins play an important role in 'lactating' crop, with several claw and scale keratins up-regulated. Additionally, transglutaminase 5 and differential splice variants of transglutaminase 4 are up-regulated along with S100-A10. CONCLUSIONS: This study of global gene expression in the crop has expanded our knowledge of pigeon milk production, in particular, the mechanism of cornification and lipid production. It is a highly specialised process that utilises the normal keratinocyte cellular processes to produce a targeted nutrient solution for the young at a very high turnover.


Assuntos
Columbidae/genética , Perfilação da Expressão Gênica , Leite/fisiologia , Triglicerídeos/genética , Animais , Apoptose , Evolução Biológica , Diferenciação Celular , Columbidae/crescimento & desenvolvimento , Células Epidérmicas , Epiderme/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Transglutaminases/genética , Triglicerídeos/biossíntese , beta-Queratinas/genética
18.
Annu Rev Genomics Hum Genet ; 11: 219-38, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20565255

RESUMO

Lactation, an important characteristic of mammalian reproduction, has evolved by exploiting a diversity of strategies across mammals. Comparative genomics and transcriptomics experiments have now allowed a more in-depth analysis of the molecular evolution of lactation. Milk cell and mammary gland genomic studies have started to reveal conserved milk proteins and other components of the lactation system of monotreme, marsupial, and eutherian lineages. These analyses confirm the ancient origin of the lactation system and provide useful insight into the function of specific milk proteins in the control of lactation. These studies also illuminate the role of milk in the regulation of growth and development of the young beyond simple nutritive aspects.


Assuntos
Evolução Biológica , Lactação , Mamíferos/genética , Animais , Feminino , Humanos , Mamíferos/classificação , Mamíferos/fisiologia , Glândulas Mamárias Animais/metabolismo , Leite/química , Proteínas do Leite/genética , Filogenia
19.
Mol Phylogenet Evol ; 69(1): 4-16, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23707702

RESUMO

S100 proteins are calcium-binding proteins involved in controlling diverse intracellular and extracellular processes such as cell growth, differentiation, and antimicrobial function. We recently identified a S100-like cDNA from the tammar wallaby (Macropus eugenii) stomach. Phylogentic analysis shows wallaby S100A19 forms a new clade with other marsupial and monotreme S100A19, while this group shows similarity to eutherian S100A7 and S100A15 genes. This is also supported by amino acid and domain comparisons. We show S100A19 is developmentally-regulated in the tammar wallaby gut by demonstrating the gene is expressed in the forestomach of young animals at a time when the diet consists of only milk, but is absent in older animals when the diet is supplemented with herbage. During this transition the forestomach phenotype changes from a gastric stomach into a fermentation sac and intestinal flora changes with diet. We also show that S100A19 is expressed in the mammary gland of the tammar wallaby only during specific stages of lactation; the gene is up-regulated during pregnancy and involution and not expressed during the milk production phase of lactation. Comparison of the tammar wallaby S100A19 protein sequence with S100 protein sequences from eutherian, monotreme and other marsupial species suggest the marsupial S100A19 has two functional EF hand domains, and an extended His tail. An evolutionary analysis of S100 family proteins was carried out to gain a better understanding of the relationship between the S100 family member functions. We propose that S100A19 gene/protein is the ancestor of the eutherian S100A7 gene/protein, which has subsequently modified its original function in eutherians. This modified function may have arisen due to differentiation of evolutionary pressures placed on gut and mammary gland developmental during mammal evolution. The highly regulated differential expression patterns of S100A19 in the tammar wallaby suggests that S100A19 may play a role in gut development, which differs between metatherians and eutherians, and/or include a potential antibacterial role in order to establish the correct flora and protect against spiral bacteria in the immature forestomach. In the mammary gland it may protect the tissue from infection at times of vulnerability during the lactation cycle.


Assuntos
Evolução Molecular , Marsupiais/genética , Filogenia , Isoformas de Proteínas/genética , Proteínas S100/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , DNA Complementar/metabolismo , Feminino , Mucosa Gástrica/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Lactação/fisiologia , Macropodidae/classificação , Macropodidae/genética , Macropodidae/metabolismo , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Glândulas Mamárias Humanas/metabolismo , Marsupiais/classificação , Marsupiais/metabolismo , Dados de Sequência Molecular , Gravidez , Isoformas de Proteínas/classificação , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Proteínas S100/classificação , Proteínas S100/metabolismo , Análise de Sequência de DNA , Estômago/crescimento & desenvolvimento
20.
ACS Appl Mater Interfaces ; 15(30): 35847-35859, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37480336

RESUMO

Colostrum provides bioactive components that are essential for the colonization of microbiota in the infant gut, while preventing infectious diseases such as necrotizing enterocolitis. As colostrum is not always available from the mother, particularly for premature infants, effective and safe substitutes are keenly sought after by neonatologists. The benefits of bioactive factors in colostrum are recognized; however, there have been no accounts of human colostrum being studied during digestion of the lipid components or their self-assembly in gastrointestinal environments. Due to the weaker bile pool in infants than adults, evaluating the lipid composition of human colostrum and linking it to structural self-assembly behavior is important in these settings and thus enabling the formulation of substitutes for colostrum. This study is aimed at the rational design of an appropriate lipid component for a colostrum substitute and determining the ability of this formulation to reduce inflammation in intestinal cells. Gas chromatography was utilized to map lipid composition. The self-assembly of lipid components occurring during digestion of colostrum was monitored using small-angle X-ray scattering for comparison with substitute mixtures containing pure triglyceride lipids based on their abundance in colostrum. The digestion profiles of human colostrum and the substitute mixtures were similar. Subtle differences in lipid self-assembly were evident, with the substitute mixtures exhibiting additional non-lamellar phases, which were not seen for human colostrum. The difference is attributable to the distribution of free fatty acids released during digestion. The biological markers of necrotizing enterocolitis were modulated in cells that were treated with bifidobacteria cultured on colostrum substitute mixtures, compared to those treated with infant formula. These findings provide an insight into a colostrum substitute mixture that resembles human colostrum in terms of composition and structural behavior during digestion and potentially reduces some of the characteristics associated with necrotizing enterocolitis.


Assuntos
Colostro , Enterocolite Necrosante , Animais , Gravidez , Feminino , Recém-Nascido , Humanos , Animais Recém-Nascidos , Enterocolite Necrosante/prevenção & controle , Enterocolite Necrosante/microbiologia , Inflamação/prevenção & controle , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA