Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Biomacromolecules ; 23(3): 1158-1168, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35080884

RESUMO

Coronavirus disease 2019 (Covid-19) has caused over 5.5 million deaths worldwide, and viral mutants continue to ravage communities with limited access to injectable vaccines or high rates of vaccine hesitancy. Inhalable vaccines have the potential to address these distribution and compliance issues as they are less likely to require cold storage, avoid the use of needles, and can elicit localized immune responses with only a single dose. Alveolar macrophages represent attractive targets for inhalable vaccines as they are abundant within the lung mucosa (up to 95% of all immune cells) and are important mediators of mucosal immunity, and evidence suggests that they may be key cellular players in early Covid-19 pathogenesis. Here, we report inhalable coronavirus mimetic particles (CoMiP) designed to rapidly bind to, and be internalized by, alveolar macrophages to deliver nucleic acid-encoded viral antigens. Inspired by the SARS-CoV-2 virion structure, CoMiP carriers package nucleic acid cargo within an endosomolytic peptide envelope that is wrapped in a macrophage-targeting glycosaminoglycan coating. Through this design, CoMiP mimic several important features of the SARS-CoV-2 virion, particularly surface topography and macromolecular chemistry. As a result, CoMiP effect pleiotropic transfection of macrophages and lung epithelial cells in vitro with multiple antigen-encoding plasmids. In vivo immunization yields increased mucosal IgA levels within the respiratory tract of CoMiP vaccinated mice.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Apresentação de Antígeno , Vacinas contra COVID-19 , Camundongos , Camundongos Endogâmicos BALB C
2.
Front Immunol ; 14: 1166546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37114047

RESUMO

The global SARS-CoV-2 pandemic caused significant social and economic disruption worldwide, despite highly effective vaccines being developed at an unprecedented speed. Because the first licensed vaccines target only single B-cell antigens, antigenic drift could lead to loss of efficacy against emerging SARS-CoV-2 variants. Improving B-cell vaccines by including multiple T-cell epitopes could solve this problem. Here, we show that in silico predicted MHC class I/II ligands induce robust T-cell responses and protect against severe disease in genetically modified K18-hACE2/BL6 mice susceptible to SARS-CoV-2 infection.


Assuntos
COVID-19 , Vacinas de DNA , Animais , Camundongos , COVID-19/prevenção & controle , DNA , Epitopos de Linfócito T , Imunização , SARS-CoV-2
3.
Nutrients ; 14(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893921

RESUMO

Vitamin D supplementation is linked to improved outcomes from respiratory virus infection, and the COVID-19 pandemic renewed interest in understanding the potential role of vitamin D in protecting the lung from viral infections. Therefore, we evaluated the role of vitamin D using animal models of pandemic H1N1 influenza and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. In mice, dietary-induced vitamin D deficiency resulted in lung inflammation that was present prior to infection. Vitamin D sufficient (D+) and deficient (D-) wildtype (WT) and D+ and D- Cyp27B1 (Cyp) knockout (KO, cannot produce 1,25(OH)2D) mice were infected with pandemic H1N1. D- WT, D+ Cyp KO, and D- Cyp KO mice all exhibited significantly reduced survival compared to D+ WT mice. Importantly, survival was not the result of reduced viral replication, as influenza M gene expression in the lungs was similar for all animals. Based on these findings, additional experiments were performed using the mouse and hamster models of SARS-CoV-2 infection. In these studies, high dose vitamin D supplementation reduced lung inflammation in mice but not hamsters. A trend to faster weight recovery was observed in 1,25(OH)2D treated mice that survived SARS-CoV-2 infection. There was no effect of vitamin D on SARS-CoV-2 N gene expression in the lung of either mice or hamsters. Therefore, vitamin D deficiency enhanced disease severity, while vitamin D sufficiency/supplementation reduced inflammation following infections with H1N1 influenza and SARS-CoV-2.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Deficiência de Vitamina D , Animais , Humanos , Pulmão/metabolismo , Camundongos , Pandemias , SARS-CoV-2 , Vitamina D/uso terapêutico , Deficiência de Vitamina D/epidemiologia , Vitaminas
4.
Microorganisms ; 9(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946283

RESUMO

Francisella tularensis (Ft) is a Gram-negative, facultative intracellular coccobacillus that is the etiological agent of tularemia. Interestingly, the disease tularemia has variable clinical presentations that are dependent upon the route of infection with Ft. Two of the most likely routes of Ft infection include intranasal and intradermal, which result in pneumonic and ulceroglandular tularemia, respectively. While there are several differences between these two forms of tularemia, the most notable disparity is between mortality rates: the mortality rate following pneumonic tularemia is over ten times that of the ulceroglandular disease. Understanding the differences between intradermal and intranasal Ft infections is important not only for clinical diagnoses and treatment but also for the development of a safe and effective vaccine. However, the immune correlates of protection against Ft, especially within the context of infection by disparate routes, are not yet fully understood. Recent advances in different animal models have revealed new insights in the complex interplay of innate and adaptive immune responses, indicating dissimilar patterns in both responses following infection with Ft via different routes. Further investigation of these differences will be crucial to predicting disease outcomes and inducing protective immunity via vaccination or natural infection.

5.
Front Immunol ; 12: 701341, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777335

RESUMO

The essential micronutrient Selenium (Se) is co-translationally incorporated as selenocysteine into proteins. Selenoproteins contain one or more selenocysteines and are vital for optimum immunity. Interestingly, many pathogenic bacteria utilize Se for various biological processes suggesting that Se may play a role in bacterial pathogenesis. A previous study had speculated that Francisella tularensis, a facultative intracellular bacterium and the causative agent of tularemia, sequesters Se by upregulating Se-metabolism genes in type II alveolar epithelial cells. Therefore, we investigated the contribution of host vs. pathogen-associated selenoproteins in bacterial disease using F. tularensis as a model organism. We found that F. tularensis was devoid of any Se utilization traits, neither incorporated elemental Se, nor exhibited Se-dependent growth. However, 100% of Se-deficient mice (0.01 ppm Se), which express low levels of selenoproteins, succumbed to F. tularensis-live vaccine strain pulmonary challenge, whereas 50% of mice on Se-supplemented (0.4 ppm Se) and 25% of mice on Se-adequate (0.1 ppm Se) diet succumbed to infection. Median survival time for Se-deficient mice was 8 days post-infection while Se-supplemented and -adequate mice was 11.5 and >14 days post-infection, respectively. Se-deficient macrophages permitted significantly higher intracellular bacterial replication than Se-supplemented macrophages ex vivo, corroborating in vivo observations. Since Francisella replicates in alveolar macrophages during the acute phase of pneumonic infection, we hypothesized that macrophage-specific host selenoproteins may restrict replication and systemic spread of bacteria. F. tularensis infection led to an increased expression of several macrophage selenoproteins, suggesting their key role in limiting bacterial replication. Upon challenge with F. tularensis, mice lacking selenoproteins in macrophages (TrspM) displayed lower survival and increased bacterial burden in the lung and systemic tissues in comparison to WT littermate controls. Furthermore, macrophages from TrspM mice were unable to restrict bacterial replication ex vivo in comparison to macrophages from littermate controls. We herein describe a novel function of host macrophage-specific selenoproteins in restriction of intracellular bacterial replication. These data suggest that host selenoproteins may be considered as novel targets for modulating immune response to control a bacterial infection.


Assuntos
Francisella tularensis/imunologia , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Selenoproteínas/metabolismo , Tularemia/etiologia , Tularemia/metabolismo , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Francisella tularensis/genética , Francisella tularensis/patogenicidade , Camundongos , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/microbiologia , Pneumonia/patologia , Tularemia/mortalidade , Virulência/genética , Fatores de Virulência/genética
6.
IEEE Trans Radiat Plasma Med Sci ; 4(5): 655-662, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36091604

RESUMO

Plasma medicine is a rapidly expanding field that utilizes non-equilibrium plasma discharges at atmospheric conditions or in liquids for clinical applications. There is significant interest in the production of plasma in the liquid phase for wastewater treatment, agricultural applications, and medical purposes. However, little investigation has been done about the effects of dielectric coatings on submerged electrodes, which is of significant interest to limit electrical current flow in the liquid. This work investigates the effect of different dielectric coatings including aluminum oxide, parylene C, and bi-layer combinations, on plasma discharge characteristics in phosphate-buffered saline (σ = 18 mS/cm) from nanosecond high-voltage pulses. Observed results for aluminum oxide are consistent with past works, including micron-sized clusters of holes generated in the layer due to dielectric breakdown. A bi-layer combination of parylene C on top of aluminum oxide resulted in longer lifetime for electrodes, possibly due to the melting/solidification behavior of the polymer, which may have a "healing" effect. The use of a thick parylene C layer resulted in a different, "creeping", discharge regime, which is hypothesized to be similar to triple-gap discharge observed in space plasma physics and high-voltage insulators, in which the electric field is enhanced at the boundary of a conductor, dielectric, and a vacuum/fluid, resulting in discharge at this junction point. Temporally-resolved and high-spatial-resolution imaging are required for verification.

7.
Sci Rep ; 10(1): 3066, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080228

RESUMO

Emergence and spread of antibiotic resistance calls for development of non-chemical treatment options for bacterial infections. Plasma medicine applies low-temperature plasma (LTP) physics to address biomedical problems such as wound healing and tumor suppression. LTP has also been used for surface disinfection. However, there is still much to be learned regarding the effectiveness of LTP on bacteria in suspension in liquids, and especially on porous surfaces. We investigated the efficacy of LTP treatments against bacteria using an atmospheric-pressure plasma jet and show that LTP treatments have the ability to inhibit both gram-positive (S. aureus) and gram-negative (E. coli) bacteria on solid and porous surfaces. Additionally, both direct LTP treatment and plasma-activated media were effective against the bacteria suspended in liquid culture. Our data indicate that reactive oxygen species are the key mediators of the bactericidal effects of LTP and hydrogen peroxide is necessary but not sufficient for antibacterial effects. In addition, our data suggests that bacteria exposed to LTP do not develop resistance to further treatment with LTP. These findings suggest that this novel atmospheric-pressure plasma jet could be used as a potential alternative to antibiotic treatments in vivo.


Assuntos
Antibacterianos/farmacologia , Pressão Atmosférica , Temperatura Baixa , Gases em Plasma/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Peróxido de Hidrogênio/farmacologia , Testes de Sensibilidade Microbiana , Espécies Reativas de Nitrogênio/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA