Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 590, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683245

RESUMO

BACKGROUND: Boucher Neuhäuser Syndrome (BNS) is a rare disease with autosomal recessive inheritance defined by the classical triad; early-onset ataxia, hypogonadism and chorioretinal dystrophy. CASE PRESENTATION: We present two siblings diagnosed with BNS at midlife, identified with homozygous state of a novel PNPLA6 missense mutation. One healthy sibling and the mother were heterozygous carriers of the mutation. The proband presented with the classical triad and the other sibling presented with visual problems at first. The proband was referred to our department by a private Neurologist, in early adulthood, because of hypogonadism, cerebellar ataxia, axonal neuropathy, and chorioretinal dystrophy for further evaluation. The sibling was referred to our department for evaluation, at childhood, due to visual problems. Later, the patient displayed the triad of ataxia, hypogonadotropic hypogonadism, and chorioretinal dystrophy. The unusual medical history of the two siblings led to further examinations and eventually the diagnosis of the first BNS cases in Cyprus. WES-based ataxia in silico gene panel analysis revealed 15 genetic variants and further filtering analysis revealed the PNPLA6 c.3323G > A variant. Segregation analysis in the family with Sanger sequencing confirmed the PNPLA6 homozygous variant c.3323G > A, p.Arg1108Gln in exon 29. CONCLUSIONS: This highlights the importance of considering rare inherited causes of visual loss, spinocerebellar ataxia, or/and HH in a neurology clinic and the significant role of genetic sequencing in the diagnostic process.


Assuntos
Aciltransferases , Ataxia Cerebelar , Hipogonadismo , Distrofias Retinianas , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Aciltransferases/genética , Ataxia Cerebelar/genética , Hipogonadismo/genética , Mutação de Sentido Incorreto/genética , Linhagem , Fosfolipases/genética , Distrofias Retinianas/genética , Irmãos , Ataxias Espinocerebelares/genética
2.
Ann Neurol ; 86(2): 225-240, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31187503

RESUMO

OBJECTIVE: To identify disease-causing variants in autosomal recessive axonal polyneuropathy with optic atrophy and provide targeted replacement therapy. METHODS: We performed genome-wide sequencing, homozygosity mapping, and segregation analysis for novel disease-causing gene discovery. We used circular dichroism to show secondary structure changes and isothermal titration calorimetry to investigate the impact of variants on adenosine triphosphate (ATP) binding. Pathogenicity was further supported by enzymatic assays and mass spectroscopy on recombinant protein, patient-derived fibroblasts, plasma, and erythrocytes. Response to supplementation was measured with clinical validated rating scales, electrophysiology, and biochemical quantification. RESULTS: We identified biallelic mutations in PDXK in 5 individuals from 2 unrelated families with primary axonal polyneuropathy and optic atrophy. The natural history of this disorder suggests that untreated, affected individuals become wheelchair-bound and blind. We identified conformational rearrangement in the mutant enzyme around the ATP-binding pocket. Low PDXK ATP binding resulted in decreased erythrocyte PDXK activity and low pyridoxal 5'-phosphate (PLP) concentrations. We rescued the clinical and biochemical profile with PLP supplementation in 1 family, improvement in power, pain, and fatigue contributing to patients regaining their ability to walk independently during the first year of PLP normalization. INTERPRETATION: We show that mutations in PDXK cause autosomal recessive axonal peripheral polyneuropathy leading to disease via reduced PDXK enzymatic activity and low PLP. We show that the biochemical profile can be rescued with PLP supplementation associated with clinical improvement. As B6 is a cofactor in diverse essential biological pathways, our findings may have direct implications for neuropathies of unknown etiology characterized by reduced PLP levels. ANN NEUROL 2019;86:225-240.


Assuntos
Mutação/genética , Polineuropatias/tratamento farmacológico , Polineuropatias/genética , Piridoxal Quinase/genética , Fosfato de Piridoxal/administração & dosagem , Complexo Vitamínico B/administração & dosagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Suplementos Nutricionais , Feminino , Redes Reguladoras de Genes/genética , Humanos , Masculino , Resultado do Tratamento
3.
Neurol Genet ; 10(3): e200149, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685975

RESUMO

Background and Objectives: The intronic biallelic AAGGG expansion in the replication factor C subunit 1 (RFC1) gene was recently associated with a phenotype combining cerebellar ataxia, neuropathy, and vestibular areflexia syndrome, as well as with late-onset ataxia. Following this discovery, studies in multiple populations extended the phenotypic and genotypic spectrum of this locus. Multiple benign and additional pathogenic configurations are currently known. Our main objectives were to study the prevalence of the pathogenic AAGGG expansion in the Cypriot population, to further characterize the RFC1 repeat locus allele distribution, and to search for possible novel repeat configurations. Methods: Cypriot undiagnosed patients, in the majority presenting at least with cerebellar ataxia and non-neurologic disease controls, were included in this study. A combination of conventional methods was used, including standard PCR flanking the repeat region, repeat-primed PCR, long-range PCR, and Sanger sequencing. Bioinformatics analysis of already available in-house short-read whole-genome sequencing data was also performed. Results: A large group of undiagnosed patients (n = 194), mainly presenting with pure ataxia or with ataxia accompanied by neuropathy or additional symptoms, as well as a group of non-disease controls (n = 100), were investigated in the current study. Our findings include the diagnosis of 10 patients homozygous for the pathogenic AAGGG expansion and a high percentage of heterozygous AAGGG carriers in both groups. The benign AAAAGn, AAAGGn, and AAGAGn configurations were also identified in our cohorts. We also report and discuss the identification of 2 recently reported novel and possibly benign repeat configurations, AAAGGGn and AAGACn, thus confirming their existence in another distinct population, and we highlight an increased frequency of the AAAGGGn in the patient group, including a single case of homozygosity. Discussion: Our findings indicate the existence of genetic heterogeneity regarding the RFC1 repeat configurations and that the AAGGG pathogenic expansion is a frequent cause of ataxia in the Cypriot population.

4.
Sci Rep ; 13(1): 1934, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732374

RESUMO

Systemic sclerosis (SSc) is a rheumatic disease characterised by vasculopathy, inflammation and fibrosis. Its aetiopathogenesis is still unknown, and the pathways/mechanisms of the disease are not clarified. This study aimed to perform in silico analysis of the already Mass Spectrometry (MS)-based discovered biomarkers of SSc to extract possible pathways/mechanisms implicated in the disease. We recorded all published candidate MS-based found biomarkers related to SSc. We then selected a number of the candidate biomarkers using specific criteria and performed pathway and cellular component analyses using Enrichr. We used PANTHER and STRING to assess the biological processes and the interactions of the recorded proteins, respectively. Pathway analysis extracted several pathways that are associated with the three different stages of SSc pathogenesis. Some of these pathways are also related to other diseases, including autoimmune diseases. We observe that these biomarkers are located in several cellular components and implicated in many biological processes. STRING analysis showed that some proteins interact, creating significant clusters, while others do not display any evidence of an interaction. All these data highlight the complexity of SSc, and further investigation of the extracted pathways/biological processes and interactions may help study the disease from a different angle.


Assuntos
Proteômica , Escleroderma Sistêmico , Humanos , Escleroderma Sistêmico/patologia , Fibrose , Biomarcadores , Espectrometria de Massas
5.
Front Neurol ; 14: 1264743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38073637

RESUMO

Introduction: Amyotrophic lateral sclerosis (ALS) is a devastating, uniformly lethal degenerative disease of motor neurons, presenting with relentlessly progressive muscle atrophy and weakness. The etiology of ALS remains unexplained for over 85% of all cases, suggesting that besides the genetic basis of the disease, various environmental factors are implicated in the pathogenesis of ALS. This study aimed to investigate the contribution of known environmental risk factors of ALS in the Cypriot population. Methods: We conducted a case-control study with a total of 56 ALS cases and 56 healthy gender/age-matched controls of Cypriot nationality. Demographic, lifestyle characteristics, medical conditions, and environmental exposures were collected through the use of a detailed questionnaire. Statistical analyses using the R programming language examined the association between the above environmental factors and ALS. Results: A chi-square test analysis revealed a statistically significant (p = 0.000461) difference in smoking status between the two groups. In addition, univariate logistic regression analysis showed a statistically significant association between ALS cases for head trauma/injury (p = 0.0398) and exposure to chemicals (p = 0.00128), compared to controls. Conclusion: This case-control investigation has shed some light on the epidemiological data of ALS in Cyprus, by identifying environmental determinants of ALS, such as smoking, head trauma, and chemical exposure, in the Cypriot population.

6.
Front Neurol ; 14: 1241195, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799281

RESUMO

Introduction: Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by pathogenic variants in the SMN1 gene. The majority of SMA patients harbor a homozygous deletion of SMN1 exon 7 (95%). Heterozygosity for a conventional variant and a deletion is rare (5%) and not easily detected, due to the highly homologous SMN2 gene interference. SMN2 mainly produces a truncated non-functional protein (SMN-d7) instead of the full-length functional (SMN-FL). We hereby report a novel SMN1 splicing variant in an infant with severe SMA. Methods: MLPA was used for SMN1/2 exon dosage determination. Sanger sequencing approaches and long-range PCR were employed to search for an SMN1 variant. Conventional and improved Real-time PCR assays were developed for the qualitative and quantitative SMN1/2 RNA analysis. Results: The novel SMN1 splice-site variant c.835-8_835-5delinsG, was identified in compound heterozygosity with SMN1 exons 7/8 deletion. RNA studies revealed complete absence of SMN1 exon 7, thus confirming a disruptive effect of the variant on SMN1 splicing. No expression of the functional SMN1-FL transcript, remarkable expression of the SMN1-d7 and increased levels of the SMN2-FL/SMN2-d7 transcripts were observed. Discussion: We verified the occurrence of a non-deletion SMN1 variant and supported its pathogenicity, thus expanding the SMN1 variants spectrum. We discuss the updated SMA genetic findings in the Cypriot population, highlighting an increased percentage of intragenic variants compared to other populations.

7.
J Neurol ; 270(5): 2576-2590, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36738336

RESUMO

BACKGROUND: Charcot-Marie-Tooth disease (CMT) is a genetically and clinically heterogeneous group of inherited neuropathies. Monoallelic pathogenic variants in ATP1A1 were associated with axonal and intermediate CMT. ATP1A1 encodes for the catalytic α1 subunit of the Na+/ K+ ATPase. Besides neuropathy, other associated phenotypes are spastic paraplegia, intellectual disability, and renal hypomagnesemia. We hereby report the first demyelinating CMT case due to a novel ATP1A1 variant. METHODS: Whole-exome sequencing on the patient's genomic DNA and Sanger sequencing to validate and confirm the segregation of the identified p.P600R ATP1A1 variation were performed. To evaluate functional effects, blood-derived mRNA and protein levels of ATP1A1 and the auxiliary ß1 subunit encoded by ATP1B1 were investigated. The ouabain-survival assay was performed in transfected HEK cells to assess cell viability, and two-electrode voltage clamp studies were performed in Xenopus oocytes. RESULTS: The variant was absent in the local and global control datasets, falls within a highly conserved protein position, and is in a missense-constrained region. The expression levels of ATP1A1 and ATP1B1 were significantly reduced in the patient compared to healthy controls. Electrophysiology indicated that ATP1A1p.P600R injected Xenopus oocytes have reduced Na+/ K+ ATPase function. Moreover, HEK cells transfected with a construct encoding ATP1A1p.P600R harbouring variants that confers ouabain insensitivity displayed a significant decrease in cell viability after ouabain treatment compared to the wild type, further supporting the pathogenicity of this variant. CONCLUSION: Our results further confirm the causative role of ATP1A1 in peripheral neuropathy and broaden the mutational and phenotypic spectrum of ATP1A1-associated CMT.


Assuntos
Doença de Charcot-Marie-Tooth , Humanos , Adenosina Trifosfatases/genética , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Mutação , Ouabaína , Fenótipo , Proteínas/genética , ATPase Trocadora de Sódio-Potássio/genética
8.
Cell Biosci ; 12(1): 29, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277195

RESUMO

BACKGROUND: Spastic ataxias (SAs) encompass a group of rare and severe neurodegenerative diseases, characterized by an overlap between ataxia and spastic paraplegia clinical features. They have been associated with pathogenic variants in a number of genes, including GBA2. This gene codes for the non-lysososomal ß-glucosylceramidase, which is involved in sphingolipid metabolism through its catalytic role in the degradation of glucosylceramide. However, the mechanism by which GBA2 variants lead to the development of SA is still unclear. METHODS: In this work, we perform next-generation RNA-sequencing (RNA-seq), in an attempt to discover differentially expressed genes (DEGs) in lymphoblastoid, fibroblast cell lines and induced pluripotent stem cell-derived neurons derived from patients with SA, homozygous for the GBA2 c.1780G > C missense variant. We further exploit DEGs in pathway analyses in order to elucidate candidate molecular mechanisms that are implicated in the development of the GBA2 gene-associated SA. RESULTS: Our data reveal a total of 5217 genes with significantly altered expression between patient and control tested tissues. Furthermore, the most significant extracted pathways are presented and discussed for their possible role in the pathogenesis of the disease. Among them are the oxidative stress, neuroinflammation, sphingolipid signaling and metabolism, PI3K-Akt and MAPK signaling pathways. CONCLUSIONS: Overall, our work examines for the first time the transcriptome profiles of GBA2-associated SA patients and suggests pathways and pathway synergies that could possibly have a role in SA pathogenesis. Lastly, it provides a list of DEGs and pathways that could be further validated towards the discovery of disease biomarkers.

9.
Front Genet ; 12: 812640, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096021

RESUMO

The SPG7 gene encodes the paraplegin protein, an inner mitochondrial membrane-localized protease. It was initially linked to pure and complicated hereditary spastic paraplegia with cerebellar atrophy, and now represents a frequent cause of undiagnosed cerebellar ataxia and spastic ataxia. We hereby report the molecular characterization and the clinical features of a large Cypriot family with five affected individuals presenting with spastic ataxia in an autosomal recessive transmission mode, due to a novel SPG7 homozygous missense variant. Detailed clinical histories of the patients were obtained, followed by neurological and neurophysiological examinations. Whole exome sequencing (WES) of the proband, in silico gene panel analysis, variant filtering and family segregation analysis of the candidate variants with Sanger sequencing were performed. RNA and protein expression as well as in vitro protein localization studies and mitochondria morphology evaluation were carried out towards functional characterization of the identified variant. The patients presented with typical spastic ataxia features while some intrafamilial phenotypic variation was noted. WES analysis revealed a novel homozygous missense variant in the SPG7 gene (c.1763C > T, p. Thr588Met), characterized as pathogenic by more than 20 in silico prediction tools. Functional studies showed that the variant does not affect neither the RNA or protein expression, nor the protein localization. However, aberrant mitochondrial morphology has been observed thus indicating mitochondrial dysfunction and further demonstrating the pathogenicity of the identified variant. Our study is the first report of an SPG7 pathogenic variant in the Cypriot population and broadens the spectrum of SPG7 pathogenic variants.

10.
Front Genet ; 12: 746101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868216

RESUMO

The neuronal ceroid lipofuscinoses (NCLs), also known as Batten disease, are a group of autosomal recessive lysosomal storage disorders that are characterized by neurodegeneration, progressive cognitive decline, motor impairment, ataxia, loss of vision, seizures, and premature death. To date, pathogenic variants in more than 13 genes have been associated with NCLs. CLN6 encodes an endoplasmic reticulum non-glycosylated transmembrane protein, which is involved in lysosomal acidification. Mutations in CLN6 cause late-infantile juvenile NCL (JNCL) adult-onset NCL, and Kufs disease. Members from two available families with JNCL were clinically evaluated, and samples were collected from consenting individuals. The molecular investigation was performed by whole-exome sequencing, Sanger sequencing, and family segregation analysis. Furthermore, in silico prediction analysis and structural modeling of the identified CLN6 variants were performed. We report clinical and genetic findings of three patients from two Greek-Cypriot families (families 915 and 926) with JNCL. All patients were males, and the first symptoms appeared at the age of 6 years. The proband of family 926 presented with loss of motor abilities, ataxia, spasticity, seizure, and epilepsy. The proband of family 915 had ataxia, spasticity, dysarthria, dystonia, and intellectual disability. Both probands did not show initial signs of vision and/or hearing loss. Molecular analysis of family 926 revealed two CLN6 biallelic variants: the novel, de novo p.Tyr295Cys and the known p.Arg136His variants. In family 915, both patients were homozygous for the p.Arg136His CLN6 variant. Prediction analysis of the two CLN6 variants characterized them as probably damaging and disease-causing. Structural modeling of the variants predicted that they probably cause protein structural differentiation. In conclusion, we describe two unrelated Cypriot families with JNCL. Both families had variants in the CLN6 gene; however, they presented with slightly different symptoms, and notably none of the patients has loss of vision. In silico prediction and structural analyses indicate that both variants are most likely pathogenic.

11.
Neuroepidemiology ; 35(3): 171-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20571287

RESUMO

BACKGROUND: Charcot-Marie-Tooth disease (CMT) is the most common inherited neuropathy. CMT is classified into 2 main subgroups: a demyelinating and an axonal type. Further subdivisions within these 2 main categories exist and intermediate forms have more recently been described. Inheritance can be autosomal dominant, recessive or X-linked. CMT is associated with more than 30 loci, and about 25 causative genes have been described thus far. METHODS: We studied epidemiological, clinical and genetic characteristics of CMT in the Cypriot population. RESULTS: The prevalence of CMT in Cyprus on January 15, 2009, is estimated to be 16 per 100,000. Thirty-three families and 8 sporadic patients were ascertained. CMT was demyelinating in 52%, axonal in 33% and intermediate in 15% of the patients. Thirteen families had PMP22 duplication, 3 families had the PMP22 S22F mutation, 4 families had GJB1/Cx32 mutations, 2 families had different MPZ mutations, 1 of them novel, and 2 families had different MFN2 mutations. Nine families and 8 sporadic patients were excluded from the common CMT genes. CONCLUSION: The most frequent CMT mutation worldwide, the PMP22 duplication, is also the most frequent CMT mutation in the Cypriot population. Five out of the 8 other mutations are novel, not reported in other populations.


Assuntos
Doença de Charcot-Marie-Tooth/epidemiologia , Doença de Charcot-Marie-Tooth/genética , Duplicação Cromossômica , Proteínas da Mielina/genética , Mutação Puntual , Adulto , Idade de Início , Chipre/epidemiologia , Feminino , Frequência do Gene , Genética Populacional , Humanos , Masculino , Linhagem , Prevalência
12.
Artigo em Inglês | MEDLINE | ID: mdl-33505483

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease, affecting the elderly at a high incidence. AD is of unknown etiology and currently, no cure is available. Present medication is restricted to treating symptoms; thus, a need exists for the development of effective remedies. Medicinal plants constitute a large pool, from which active compounds of great pharmaceutical potential can be derived. Various Salvia spp. are considered as neuroprotective, and here, the ability of Salvia fruticosa (SF) to protect against toxic effects induced in an AD cell model was partly assessed. Two of AD's characteristic hallmarks are the presence of elevated oxidative stress levels and the cytotoxic aggregation of amyloid beta (Aß) peptides. Thus, we obtained SF extracts in three different solvents of increasing polarity, consecutively, to evaluate (a) their antioxidant capacity with the employment of the free radical scavenging assay (DPPH•), of the ferric reducing ability of plasma assay (FRAP), and of the cellular reactive oxygen species assay (DCFDA) and (b) their neuroprotective properties against Aß 25-35-induced cell death with the use of an MTT assay. All three SF extracts showed a considerable antioxidant capacity, with the methanol (SFM) extract being the strongest. The results of the total phenolic and flavonoid contents (TPC and TFC) of the extracts and of the FRAP and the DCFDA assays showed a similar pattern. In addition, and most importantly, the dichloromethane (SFD) and the petroleum ether (SFP) extracts had an effect on Aß toxicity, exhibiting a significant neuroprotective potential. To our knowledge, this is the first report of SF extracts demonstrating neuroprotective potential against Aß toxicity. In combination with their antioxidant capacity, SF extracts may be beneficial in combating AD and other neurodegenerative diseases.

13.
Genet Test Mol Biomarkers ; 24(5): 309-317, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32315557

RESUMO

Background: Systemic Sclerosis (SSc), also known as scleroderma, is an autoimmune rheumatic disease, which is clinically subdivided into two major subgroups; limited (lcSSc) and diffuse cutaneous scleroderma (dcSSc). Even though the SSc etiologies remains unclear, some HLA and non-HLA genetic variants have been associated with the disease. Aim: This study was designed to evaluate the associations between several HLA-related genetic variants and SSc in the Greek-Cypriot population. Methods: Forty-one SSc patients and 164 controls were genotyped at 18 selected single nucleotide polymorphisms (SNPs) using restriction fragment length polymorphism analyses, Sanger sequencing, and a multiplex SNaPshot minisequencing assay. Logistic regression analysis under the log-additive model was used to evaluate all possible associations between these SNPs and SSc; nominal statistical significance was assumed at p < 0.05. Results: Associations of SSc with SNPs rs3117230, rs3128930, and rs3128965 within the HLA-DPB1 and HLA-DPB2 regions were observed in the Greek-Cypriot population at the level of p < 0.05. However, none of these associations survived a Bonferroni correction. The direction of the effect is consistent with the direction reported in previous studies. In addition, allele frequencies of the majority of the selected SNPs in the Greek-Cypriot population are similar to those reported in the European population. Conclusion: This study initiates the genetic investigation of SSc in the Greek-Cypriot population, a relatively small newly investigated population. Further investigation with a larger sample size and/or additional SSc susceptibility loci may confirm the association of some of these variants with SSc in the Greek-Cypriot population that could potentially be used for predictive testing.


Assuntos
Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Escleroderma Sistêmico/genética , Adulto , Alelos , Estudos de Casos e Controles , Chipre/epidemiologia , Feminino , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Genótipo , Grécia/epidemiologia , Cadeias beta de HLA-DP/genética , Cadeias beta de HLA-DP/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Projetos Piloto , Polimorfismo de Nucleotídeo Único/genética , Escleroderma Sistêmico/metabolismo
14.
Arthritis Res Ther ; 22(1): 107, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381114

RESUMO

BACKGROUND: Pathogenesis and aetiology of systemic sclerosis (SSc) are currently unclear, thus rendering disease prognosis, diagnosis and treatment challenging. The aim of this study was to use paired skin biopsy samples from affected and unaffected areas of the same patient, in order to compare the proteomes and identify biomarkers and pathways which are associated with SSc pathogenesis. METHODS: Biopsies were obtained from affected and unaffected skin areas of SSc patients. Samples were cryo-pulverised and proteins were extracted and analysed using mass spectrometry (MS) discovery analysis. Differentially expressed proteins were revealed after analysis with the Progenesis QIp software. Pathway analysis was performed using the Enrichr Web server. Using specific criteria, fifteen proteins were selected for further validation with targeted-MS analysis. RESULTS: Proteomic analysis led to the identification and quantification of approximately 2000 non-redundant proteins. Statistical analysis showed that 169 of these proteins were significantly differentially expressed in affected versus unaffected tissues. Pathway analyses showed that these proteins are involved in multiple pathways that are associated with autoimmune diseases (AIDs) and fibrosis. Fifteen of these proteins were further investigated using targeted-MS approaches, and five of them were confirmed to be significantly differentially expressed in SSc affected versus unaffected skin biopsies. CONCLUSION: Using MS-based proteomics analysis of human skin biopsies from patients with SSc, we identified a number of proteins and pathways that might be involved in SSc progression and pathogenesis. Fifteen of these proteins were further validated, and results suggest that five of them may serve as potential biomarkers for SSc.


Assuntos
Proteômica , Escleroderma Sistêmico/diagnóstico , Biomarcadores , Biópsia , Ensaios de Triagem em Larga Escala , Humanos , Escleroderma Sistêmico/patologia , Pele
15.
Differentiation ; 76(2): 182-92, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17662069

RESUMO

Mammals possess reduced ability to regenerate lost tissue, compared with other vertebrates, which can regenerate through differentiation of precursor cells or de-differentiation. Mammalian multinucleated myotube formation is a differentiation process, which arises from the fusion of mononucleated myoblasts and is thought to be an irreversible process toward muscle formation. By overexpressing the Twist gene in terminally differentiated myotubes, we managed to induce reversal of cell differentiation. More specifically, following expression of the Twist gene, myotubes underwent morphological changes that caused them to cleave. This was accompanied by a reduction in the expression of certain myogenic markers. Interestingly, Twist overexpression also caused a reduction in the muscle transcription factor MyoD. Further experiments showed an increase in the cell cycle entry molecule, cyclin D1 and initiation of DNA synthesis, due to Twist overexpression. The exploitation of Twist-mediated reversal of differentiation and the study of its specific mechanism would be important in order to study mammalian cellular de-differentiation and determine its potential in muscle regeneration.


Assuntos
Diferenciação Celular , Fibras Musculares Esqueléticas/citologia , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Animais , Desenvolvimento Muscular , Proteína MyoD/metabolismo , Proteínas Nucleares/genética , Proteína 1 Relacionada a Twist/genética
17.
PLoS One ; 14(2): e0211814, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30726272

RESUMO

CMT is the most common hereditary neuromuscular disorder of the peripheral nervous system with a prevalence of 1/2500 individuals and it is caused by mutations in more than 80 genes. LRSAM1, a RING finger ubiquitin ligase also known as TSG101-associated ligase (TAL), has been associated with Charcot-Marie-Tooth disease type 2P (CMT2P) and to date eight causative mutations have been identified. Little is currently known on the pathogenetic mechanisms that lead to the disease. We investigated the effect of LRSAM1 deregulation on possible LRSAM1 interacting molecules in cell based models. Possible LRSAM1 interacting molecules were identified using protein-protein interaction databases and literature data. Expression analysis of these molecules was performed in both CMT2P patient and control lymphoblastoid cell lines as well as in LRSAM1 and TSG101 downregulated SH-SY5Y cells.TSG101, UBE2N, VPS28, EGFR and MDM2 levels were significantly decreased in the CMT2P patient lymphoblastoid cell line as well as in LRSAM1 downregulated cells. TSG101 downregulation had a significant effect only on the expression of VPS28 and MDM2 and it did not affect the levels of LRSAM1. This study confirms that LRSAM1 is a regulator of TSG101 expression. Furthermore, deregulation of LRSAM1 significantly affects the levels of UBE2N, VPS28, EGFR and MDM2.


Assuntos
Doença de Charcot-Marie-Tooth/metabolismo , Proteínas de Ligação a DNA/biossíntese , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas c-mdm2/biossíntese , Fatores de Transcrição/biossíntese , Enzimas de Conjugação de Ubiquitina/biossíntese , Ubiquitina-Proteína Ligases/biossíntese , Linhagem Celular Tumoral , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Receptores ErbB/biossíntese , Receptores ErbB/genética , Humanos , Proteínas Proto-Oncogênicas c-mdm2/genética , Fatores de Transcrição/genética , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética
18.
BMC Med Genet ; 9: 28, 2008 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-18405395

RESUMO

BACKGROUND: Senataxin (chromosome 9q34) was recently identified as the causative gene for an autosomal recessive form of Ataxia (ARCA), termed as Ataxia with Oculomotor Apraxia, type 2 (AOA2) and characterized by generalized incoordination, cerebellar atrophy, peripheral neuropathy, "oculomotor apraxia" and increased alpha-fetoprotein (AFP). Here, we report a novel Senataxin mutation in a Cypriot ARCA family. METHODS: We studied several Cypriot autosomal recessive cerebellar ataxia (ARCA) families for linkage to known ARCA gene loci. We linked one family (909) to the SETX locus on chromosome 9q34 and screened the proband for mutations by direct sequencing. RESULTS: Sequence analysis revealed a novel c.5308_5311delGAGA mutation in exon 11 of the SETX gene. The mutation has not been detected in 204 control chromosomes from the Cypriot population, the remaining Cypriot ARCA families and 37 Cypriot sporadic cerebellar ataxia patients. CONCLUSION: We identified a novel SETX homozygous c.5308_5311delGAGA mutation that co-segregates with ARCA with cerebellar atrophy and raised AFP.


Assuntos
Ataxia Cerebelar/genética , Cromossomos Humanos Par 9 , Genes Recessivos , RNA Helicases/genética , Deleção de Sequência , Adolescente , Sequência de Aminoácidos , Encéfalo/patologia , Ataxia Cerebelar/patologia , Criança , Chipre , DNA Helicases , Feminino , Humanos , Escore Lod , Imageamento por Ressonância Magnética , Masculino , Enzimas Multifuncionais , Linhagem
19.
Cell J ; 20(3): 340-347, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29845787

RESUMO

OBJECTIVE: Deleterious variants in LRSAM1, a RING finger ubiquitin ligase which is also known as TSG101-associated ligase (TAL), have recently been associated with Charcot-Marie-Tooth disease type 2P (CMT2P). The mechanism by which mutant LRSAM1 contributes to the development of neuropathy is currently unclear. The aim of this study was to induce LRSAM1 deficiency in a neuronal cell model, observe its effect on cell growth and morphology and attempt to rescue the phenotype with ancestral and mutant LRSAM1 transfections. MATERIALS AND METHODS: In this experimental study, we investigated the effect of LRSAM1 downregulation on neuroblastoma SH-SY5Y cells by siRNA technology where cells were transfected with siRNA against LRSAM1. The effects on the expression levels of TSG101, the only currently known LRSAM1 interacting molecule, were also examined. An equal dosage of ancestral or mutant LRSAM1 construct was transfected in LRSAM1-downregulated cells to investigate its effect on the phenotype of the cells and whether cell proliferation and morphology could be rescued. RESULTS: A significant reduction in TSG101 levels was observed with the downregulation of LRSAM1. In addition, LRSAM1 knockdown significantly decreased the growth rate of SH-SY5Y cells which is caused by a decrease in cell proliferation. An effect on cell morphology was also observed. Furthermore, we overexpressed the ancestral and the c.2047-1G>A mutant LRSAM1 in knocked down cells. Ancestral LRSAM1 recovered cell proliferation and partly the morphology, however, the c.2047-1G>A mutant did not recover cell proliferation and further aggravated the observed changes in cell morphology. CONCLUSION: Our findings suggest that depletion of LRSAM1 affects neuroblastoma cells growth and morphology and that overexpression of the c.2047-1G>A mutant form, unlike the ancestral LRSAM1, fails to rescue the phenotype.

20.
Hum Immunol ; 78(2): 153-165, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27984087

RESUMO

Systemic sclerosis is an autoimmune rheumatic disease characterised by fibrosis, vasculopathy and inflammation. The exact aetiology of SSc remains unknown but evidences show that various genetic factors may be involved. This review aimed to assess HLA alleles/non-HLA polymorphisms, microsatellites and chromosomal abnormalities that have thus far been associated with SSc. PubMed, Embase and Scopus databases were searched up to July 29, 2015 using a combination of search-terms. Articles retrieved were evaluated based on set exclusion and inclusion criteria. A total of 150 publications passed the filters. HLA and non-HLA studies showed that particular alleles in the HLA-DRB1, HLA-DQB1, HLA-DQA1, HLA-DPB1 genes and variants in STAT4, IRF5 and CD247 are frequently associated with SSc. Non-HLA genes analysis was performed using the PANTHER and STRING10 databases. PANTHER classification revealed that inflammation mediated by chemokine and cytokine, interleukin and integrin signalling pathways are among the common extracted pathways associated with SSc. STRING10 analysis showed that NFKB1, CSF3R, STAT4, IFNG, PRL and ILs are the main "hubs" of interaction network of the non-HLA genes associated with SSc. This study gathers data of valid genetic factors associated with SSc and discusses the possible interactions of implicated molecules.


Assuntos
Citocinas/genética , Antígenos HLA/genética , Inflamação/genética , Polimorfismo Genético , Escleroderma Sistêmico/genética , Animais , Redes Reguladoras de Genes , Estudos de Associação Genética , Predisposição Genética para Doença , Genoma , Humanos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA