Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Small ; : e2310813, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700050

RESUMO

The structure of supraparticles (SPs) is a key parameter for achieving advanced functionalities arising from the combination of different nanoparticle (NP) types in one hierarchical entity. However, whenever a droplet-assisted forced assembly approach is used, e.g., spray-drying, the achievable structure is limited by the inherent drying phenomena of the method. In particular, mixed NP dispersions of differently sized colloids are heavily affected by segregation during the assembly. Herein, the influence of the colloidal arrangement of Pt and SiO2 NPs within a single supraparticulate entity is investigated. A salt-based electrostatic manipulation approach of the utilized NPs is proposed to customize the structure of spray-dried Pt/SiO2 SPs. By this, size-dependent separation phenomena of NPs during solvent evaporation, that limit the catalytic performance in the reduction of 4-nitrophenol, are overcome by achieving even Pt NP distribution. Additionally, the textural properties (pore size and distribution) of the SiO2 pore framework are altered to improve the mass transfer within the material leading to increased catalytic activity. The suggested strategy demonstrates a powerful, material-independent, and universally applicable approach to deliberately customize the structure and functionality of multi-component SP systems. This opens up new ways of colloidal material combinations and structural designs in droplet-assisted forced assembly approaches like spray-drying.

2.
Langmuir ; 40(1): 1-20, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38149782

RESUMO

Pressure is a key variable in the phase behavior of responsive polymers, both for applications and from a fundamental point of view. In this feature article, we review recent developments, particularly applications of neutron techniques such as small-angle neutron scattering (SANS) and quasi-elastic neutron scattering (QENS), across the temperature-pressure phase diagram. These are complemented by kinetic SANS experiments following pressure jumps. In the prototype system poly(N-isopropylacrylamide) (PNIPAM), QENS revealed the pressure-dependent characteristics of hydration water around the lower critical solution temperature transition. The size, water content, and inner structure of the mesoglobules formed in the two-phase region depend strongly on pressure, as shown by SANS. Beside these changes at the phase transition, the mesoglobule formation at low pressure is determined by kinetic factors, namely the formation of a polymer-rich, rigid shell, which hampers further growth by coalescence. At high pressure, in contrast, the growth proceeds by diffusion-limited coalescence without any kinetic hindrance. The disintegration of the mesoglobules evolves either via chain release from their surface or via swelling, depending on the osmotic pressure of the water. Moreover, we report on the profound influence of pressure on the cononsolvency effect. In the temperature-pressure frame, the one-phase region is hugely expanded upon the addition of the cosolvent methanol. SANS experiments unveil the enthalpic and entropic contributions to the effective Flory-Huggins interaction parameter between the segments and the solvent mixture. QENS experiments demonstrate an increase in polymer associated water with pressure, whereas methanol is released. Correspondingly, the solvent phase becomes enriched in methanol, providing a mechanism for the breakdown of cononsolvency at a high pressure. Finally, we outline future opportunities for high-pressure studies of thermoresponsive polymers, with a focus on neutron methods.

3.
Langmuir ; 40(26): 13527-13537, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38889250

RESUMO

We study the effect of additives on the colloidal stability of alkanethiol-coated gold nanoparticles. Cyclic amines and sulfides of different sizes were added to dispersions in decane at additive concentrations below 128 mM. Small-angle X-ray scattering (SAXS) indicated that tetrahydrothiophene reduced the agglomeration temperature, Tagglo, by up to 29 °C, a considerable increase in colloidal stability. Amines had a much weaker stabilizing effect of up to 2.5 °C. We found an unexpected maximum of stabilization for low additive concentrations, where Tagglo increased at concentrations above 64 mM. Molecular dynamics simulations were used to correlate these observations with the ligand shell structure. They excluded the physisorption of additives as a stabilization mechanism and suggested that sulfides replace hexadecanethiol on the AuNP surfaces by chemisorption. This hinders ligand ordering, thereby reducing Tagglo, which explains the stabilizing effect. Clustering of chemisorbed additive molecules at high concentration restabilized the ligand ordered state, explaining the detrimental effect of higher additive concentrations. The predictions of the simulations were confirmed by using thermogravimetric analyses and SAXS measurements of washed samples that indicated that the structure of the ligand shell itself, not the presence of physisorbed additives, changes Tagglo. Finally, we calculated potentials of mean force, which show that larger sulfide-based additives have a weaker affinity for the gold surface than smaller ones due to stronger steric hindrance. This explains why smaller cyclic sulfides were the most efficient stabilizers.

4.
Angew Chem Int Ed Engl ; 62(42): e202310519, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37506355

RESUMO

Current environmental challenges and the shrinking fossil-fuel feedstock are important criteria for the next generation of polymer materials. In this context, we present a fully bio-based material, which shows promise as a thermoplastic elastomer (TPE). Due to the use of ß-farnesene and L-lactide as monomers, bio-based feedstocks, namely sugar cane and corn, can be used. A bifunctional initiator for the carbanionic polymerization was employed, to permit an efficient synthesis of ABA-type block structures. In addition, the "green" solvent MTBE (methyl tert-butyl ether) was used for the anionic polymerisation, enabling excellent solubility of the bifunctional anionic initiator. This afforded low dispersity (D=1.07 to 1.10) and telechelic polyfarnesene macroinitiators. These were employed for lactide polymerization to obtain H-shaped triblock copolymers. TEM and SAXS revealed clearly phase-separated morphologies, and tensile tests demonstrated elastic mechanical properties. The materials featured two glass transition temperatures, at - 66 °C and 51 °C as well as gyroid or cylindrical morphologies, resulting in soft elastic materials at room temperature.

5.
Soft Matter ; 18(15): 2884-2909, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35311857

RESUMO

Cononsolvency is an intriguing phenomenon where a polymer collapses in a mixture of good solvents. This cosolvent-induced modulation of the polymer solubility has been observed in solutions of several polymers and biomacromolecules, and finds application in areas such as hydrogel actuators, drug delivery, compound detection and catalysis. In the past decade, there has been a renewed interest in understanding the molecular mechanisms which drive cononsolvency with a predominant emphasis on its connection to the preferential adsorption of the cosolvent. Significant efforts have also been made to understand cononsolvency in complex systems such as micelles, block copolymers and thin films. In this review, we will discuss some of the recent developments from the experimental, simulation and theoretical fronts, and provide an outlook on the problems and challenges which are yet to be addressed.

6.
Soft Matter ; 16(36): 8462-8472, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32856669

RESUMO

The polymer dynamics in concentrated solutions of poly(N-isopropyl acrylamide) (PNIPAM) in D2O/CD3OD mixtures is investigated in the one-phase region. Two polymer concentrations (9 and 25 wt%) and CD3OD contents in the solvent mixture of 0, 10 and 15 vol% are chosen. Temperature-resolved dynamic light scattering (DLS) reveals the collective dynamics. Two modes are observed, namely the fast relaxation of polymer segments within the blobs and the slow collective relaxation of the blobs. As the cloud point is approached, the correlation length related to the fast mode increases with CD3OD content. It features critical scaling behavior, which is consistent with mean-field behavior for the 9 wt% PNIPAM solution in pure D2O and with 3D Ising behavior for all other solutions. While the slow mode is not very strong in the 9 wt% PNIPAM solution in pure D2O, it is significantly more prominent as CD3OD is added and at all CD3OD contents in the 25 wt% solution, which may be attributed to enhanced interaction between the polymers. Neutron spin-echo spectroscopy (NSE) reveals a decay in the intermediate structure factor which indicates a diffusive process. For the polymer concentration of 9 wt%, the diffusion coefficients from NSE are similar to the ones from the fast relaxation observed in DLS. In contrast, they are significantly lower for the solutions having a polymer concentration of 25 wt%, which is attributed to the influence of the dominant large-scale dynamic heterogeneities. To summarize, addition of cosolvent leads to enhanced large-scale heterogeneities, which are reflected in the dynamic behavior at small length scales.

7.
Biomacromolecules ; 19(2): 470-480, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29381335

RESUMO

Nanoparticles (NPs) that form by self-assembly of amphiphilic poly(N-(2-hydroxypropyl)-methacrylamide) (pHPMA) copolymers bearing cholesterol side groups are potential drug carriers for solid tumor treatment. Here, we investigate their behavior in solutions of human serum albumin (HSA) in phosphate buffered saline. Mixed solutions of NPs, from polymer conjugates with or without the anticancer drug doxorubicin (Dox) bound to them, and HSA at concentrations up to the physiological value are characterized by synchrotron small-angle X-ray scattering and isothermal titration calorimetry. When Dox is absent, a small amount of HSA molecules bind to the cholesterol groups that form the core of the NPs by diffusing through the loose pHPMA shell or get caught in meshes formed by the pHPMA chains. These interactions are strongly hindered by the presence of Dox, which is distributed in the pHPMA shell, meaning that the delivery of Dox by the NPs in the human body is not affected by the presence of HSA.


Assuntos
Colesterol/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Ácidos Polimetacrílicos/química , Albumina Sérica Humana/química , Colesterol/farmacocinética , Doxorrubicina/farmacocinética , Humanos , Neoplasias/metabolismo , Ácidos Polimetacrílicos/farmacocinética , Albumina Sérica Humana/farmacocinética
8.
Soft Matter ; 13(19): 3568-3579, 2017 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-28443918

RESUMO

We investigate the influence of pH on the rheological and structural properties of hydrogels formed by hydrophobic association of the sticky ends of the triblock terpolymer poly(methyl methacrylate)-b-poly(2-(diethylamino)ethyl methacrylate-co-methacrylic acid)-b-poly(methyl methacrylate) (PMMA-b-P(DEA-co-MAA)-b-PMMA). The middle block is a weak polyampholyte having a pH dependent charge density and sign, which enables tuning of the rheological and structural properties by pH variation. Small-angle neutron scattering (SANS) studies of solutions in D2O at 0.05 wt% and pH 3.0 reveal clusters of interconnected spherical micelles having PMMA cores, stabilized by repulsive ionic interactions in the middle polyampholyte block. With increasing pH, the degree of ionization of the DEA units decreases, whereas the one of the MAA units increases, resulting in a complete loss of the correlation between these micelles. At a concentration of 3 wt% at low pH values, the system forms a gel with charged fuzzy spheres from PMMA interacting via a screened Coulomb potential. With increasing pH, the gel disintegrates due to the decrease in the effective charge on the micelles. At both concentrations, the hydrophobic aggregation of micelles is observed near the isoelectric point. At pH 3.0-7.4, the autocorrelation functions measured by rotational dynamic light scattering at 3 wt% exhibit a decay steeper than single exponential, which confirms that the gels are frozen, presumably due to the glassy PMMA cores and hydrophobic interpolyelectrolyte complexes. At pH 11, the diffusion of single micelles is observed in addition to the frozen dynamics.

9.
Nanoscale ; 15(16): 7526-7536, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37022092

RESUMO

Hybrid dielectrics were prepared from dispersions of nanoparticles with gold cores (diameters from 2.9 nm to 8.2 nm) and covalently bound thiol-terminated polystyrene shells (5000 Da and 11 000 Da) in toluene. Their microstructure was investigated with small angle X-ray scattering and transmission electron microscopy. The particles arranged in nanodielectric layers with either face-centered cubic or random packing, depending on the ligand length and core diameter. Thin film capacitors were prepared by spin-coating inks on silicon substrates, contacted with sputtered aluminum electrodes, and characterized with impedance spectroscopy between 1 Hz and 1 MHz. The dielectric constants were dominated by polarization at the gold-polystyrene interfaces that we could precisely tune via the core diameter. There was no difference in the dielectric constant between random and supercrystalline particle packings, but the dielectric losses depended on the layer structure. A model that combines Maxwell-Wagner-Sillars theory and percolation theory described the relationship of the specific interfacial area and the dielectric constant quantitatively. The electric breakdown of the nanodielectric layers sensitively depended on particle packing. A highest breakdown field strength of 158.7 MV m-1 was found for the sample with 8.2 nm cores and short ligands that had a face-centered cubic structure. Breakdown apparently is initiated at the microscopic maxima of the electric field that depends on particle packing. The relevance of the results for industrially produced devices was demonstrated on inkjet printed thin film capacitors with an area of 0.79 mm2 on aluminum coated PET foils that retained their capacity of 1.24 ± 0.01 nF@10 kHz during 3000 bending cycles.

10.
Nanomaterials (Basel) ; 13(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38063679

RESUMO

Self-healing nanocomposites can be generated by organic functionalization of inorganic nanoparticles and complementary functionalization of the polymer matrix, allowing reversible interactions between the two components. Here, we report on self-healing nanocomposites based on ionic interactions between anionic copolymers consisting of di(ethylene glycol) methyl ether methacrylate, sodium 4-(methacryloyloxy)butan-1-sulfonate, and cationically functionalized iron oxide nanoparticles. The materials exhibited hygroscopic behavior. At water contents < 6%, the shear modulus was reduced by up to 90%. The nanoparticle concentration was identified as a second factor strongly influencing the mechanical properties of the materials. Backscattered scanning electron microscopy and small-angle X-ray scattering measurements showed the formation of agglomerates in the size range of 100 nm to a few µm in diameter, independent of concentration, resulting in the disordering of the semi-crystalline ionic polymer blocks. These effects resulted in an increase in the shear modulus of the composite from 3.7 MPa to 5.6 MPa, 6.3 Mpa, and 7.5 MPa for 2, 10, and 20 wt% particles, respectively. Temperature-induced self-healing was possible for all composites investigated. However, only 36% of the maximum stress could be recovered in systems with a low nanoparticle content, whereas the original properties were largely restored (>85%) at higher particle contents.

11.
ACS Nano ; 17(10): 9302-9312, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37163685

RESUMO

Solvent engineering is a powerful and versatile method to tune colloidal stability. Here, we link the molecular structure of apolar ligand shells on gold nanoparticles with their colloidal stability in solvent mixtures. The agglomeration temperature of the particles was measured with small-angle X-ray scattering. It depended on solvent composition and changed linearly for hexane-hexadecane mixtures, but nonlinearly for cyclohexane-hexadecane and hexanol-hexadecane mixtures. Molecular dynamics (MD) simulations indicate that agglomeration is dominated by temperature-dependent ligand order in the alkane mixtures and that the temperature at which the ligand shell orders depends on the solvent composition near the ligands, which can differ substantially from the bulk composition. Small-angle neutron scattering confirmed that, at intermediate solvent compositions above the agglomeration temperature, the fraction of cyclohexane near the ligands was larger than in the bulk. The enrichment of cyclohexane near the ligands stabilized their disordered state, which, consequently, led to the experimentally observed nonlinear trend of the agglomeration temperature. In contrast, hexanol was depleted from the ligand shell at all temperatures. This again stabilized the disordered state. Furthermore, we found that agglomeration at high hexanol fractions was driven by a solvophobic effect that exceeded the influence of ligand order. The results show that strong nonlinearities in the colloidal stability of nanoparticle dispersions in solvent mixtures are directly linked to the molecular details of ligand-solvent and solvent-solvent interactions, which can be used to precisely tune stability.

12.
Materials (Basel) ; 16(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37629794

RESUMO

The fabrication of nanocomposites containing magnetic nanoparticles is gaining interest as a model for application in small electronic devices. The self-assembly of block copolymers (BCPs) makes these materials ideal for use as a soft matrix to support the structural ordering of the nanoparticles. In this work, a high-molecular-weight polystyrene-b-poly(methyl methacrylate) block copolymer (PS-b-PMMA) was synthesized through anionic polymerization. The influence of the addition of different ratios of PMMA-coated FePt nanoparticles (NPs) on the self-assembled morphology was investigated using transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). The self-assembly of the NPs inside the PMMA phase at low particle concentrations was analyzed statistically, and the negative effect of higher particle ratios on the lamellar BCP morphology became visible. The placement of the NPs inside the PMMA phase was also compared to theoretical descriptions. The magnetic addressability of the FePt nanoparticles inside the nanocomposite films was finally analyzed using bimodal magnetic force microscopy and proved the magnetic nature of the nanoparticles inside the microphase-separated BCP films.

13.
Adv Healthc Mater ; 11(5): e2101180, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34614289

RESUMO

When searching for new antibiotics against Gram-negative bacterial infections, a better understanding of the permeability across the cell envelope and tools to discriminate high from low bacterial bioavailability compounds are urgently needed. Inspired by the phospholipid vesicle-based permeation assay (PVPA), which is designed to predict non-facilitated permeation across phospholipid membranes, outer membrane vesicles (OMVs) of Escherichia coli either enriched or deficient of porins are employed to coat filter supports for predicting drug uptake across the complex cell envelope. OMVs and the obtained in vitro model are structurally and functionally characterized using cryo-TEM, SEM, CLSM, SAXS, and light scattering techniques. In vitro permeability, obtained from the membrane model for a set of nine antibiotics, correlates with reported in bacterio accumulation data and allows to discriminate high from low accumulating antibiotics. In contrast, the correlation of the same data set generated by liposome-based comparator membranes is poor. This better correlation of the OMV-derived membranes points to the importance of hydrophilic membrane components, such as lipopolysaccharides and porins, since those features are lacking in liposomal comparator membranes. This approach can offer in the future a high throughput screening tool with high predictive capacity or can help to identify compound- and bacteria-specific passive uptake pathways.


Assuntos
Bactérias Gram-Negativas , Porinas , Disponibilidade Biológica , Porinas/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
14.
Nanoscale ; 13(31): 13421-13426, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34477747

RESUMO

Identification and control of the disintegration mechanism of polymer nanoparticles are essential for applications in transport and release including polymer delivery systems. Structural changes during the disintegration of poly(N-isopropylacrylamide) (PNIPAM) mesoglobules in aqueous solution are studied in situ and in real time using kinetic small-angle neutron scattering with a time resolution of 50 ms. Simultaneously length scales between 1 and 100 nm are resolved. By initiating phase separation through fast pressure jumps across the coexistence line, 3 wt% PNIPAM solutions are rapidly brought into the one-phase state. Starting at the same temperature (35.1 °C) and pressure (17 MPa) the target pressure is varied over the range 25-48 MPa, allowing to systematically alter the osmotic pressure of the solvent within the mesoglobules. Initially, the mesoglobules have a radius of gyration of about 80 nm and contain a small amount of water. Two disintegration mechanisms are identified: (i) for target pressures close to the coexistence line, single polymers are released from the surface of the mesoglobules, and the mesoglobules decrease in size, which takes ∼30 s. (ii) For target pressures more distant from the coexistence line, the mesoglobules are swollen by water, and subsequently the chains become more and more loosely associated. In this case, disintegration proceeds within less than 10 s, controlled by the osmotic pressure of the solvent.

15.
J Phys Chem B ; 125(49): 13542-13551, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34851128

RESUMO

We investigate active droplets that form at the expense of a chemical fuel in aqueous buffer and vanish autonomously. Dynamic light scattering reveals the scattered intensity, the hydrodynamic radius, and the width of the size distribution with high precision as well as high temporal and spatial resolutions. Comparing the resulting time-dependent behavior of the droplet characteristics with the time-dependent concentration of the anhydrides, the roles of the chemical reaction cycle and of colloidal growth processes are elucidated. The droplet sizes and lifetimes depend strongly on the hydrophobicity of the precursor, and the growth rate is found to correlate with the deactivation rate of the product.


Assuntos
Água , Difusão Dinâmica da Luz , Interações Hidrofóbicas e Hidrofílicas
16.
ACS Macro Lett ; 7(10): 1155-1160, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-35651267

RESUMO

The phase transition from swollen chains to polymer mesoglobules of an aqueous solution of poly(N-isopropylacrylamide) is investigated with kinetic small-angle neutron scattering with 50 ms time resolution in conjunction with millisecond pressure jumps across the coexistence line. The time-resolved study evidenced three distinct regimes: fractal clusters form during the first second and transform into compact mesoglobules. During the following ∼20 s, these grow by diffusion-limited coalescence. The final step consists of a slow growth characterized by an energy barrier of several kBT. The method opens opportunities for kinetic structural studies of multicomponent systems over wide length and time scales and gives a structural picture spanning from the chain collapse to mesoscopic phase separation.

17.
Materials (Basel) ; 11(5)2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29883371

RESUMO

Polysulfobetaines in aqueous solution show upper critical solution temperature (UCST) behavior. We investigate here the representative of this class of materials, poly (N,N-dimethyl-N-(3-methacrylamidopropyl) ammonio propane sulfonate) (PSPP), with respect to: (i) the dynamics in aqueous solution above the cloud point as function of NaBr concentration; and (ii) the swelling behavior of thin films in water vapor as function of the initial film thickness. For PSPP solutions with a concentration of 5 wt.%, the temperature dependence of the intensity autocorrelation functions is measured with dynamic light scattering as function of molar mass and NaBr concentration (0⁻8 mM). We found a scaling of behavior for the scattered intensity and dynamic correlation length. The resulting spinodal temperatures showed a maximum at a certain (small) NaBr concentration, which is similar to the behavior of the cloud points measured previously by turbidimetry. The critical exponent of susceptibility depends on NaBr concentration, with a minimum value where the spinodal temperature is maximum and a trend towards the mean-field value of unity with increasing NaBr concentration. In contrast, the critical exponent of the correlation length does not depend on NaBr concentration and is lower than the value of 0.5 predicted by mean-field theory. For PSPP thin films, the swelling behavior was found to depend on film thickness. A film thickness of about 100 nm turns out to be the optimum thickness needed to obtain fast hydration with H2O.

18.
ACS Macro Lett ; 6(11): 1180-1185, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-35650792

RESUMO

Above their cloud point, aqueous solutions of the thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAM) form large mesoglobules. We have carried out very small-angle neutron scattering (VSANS with q = 0.21-2.3 × 10-3 Å-1) and Raman spectroscopy experiments on a 3 wt % PNIPAM solution in D2O at atmospheric and elevated pressures (up to 113 MPa). Raman spectroscopy reveals that, at high pressure, the polymer is less dehydrated upon crossing the cloud point. VSANS shows that the mesoglobules are significantly larger and contain more D2O than at atmospheric pressure. We conclude that the size of the mesoglobules and thus their growth process are closely related to the hydration state of PNIPAM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA