Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34504005

RESUMO

Fungi of the genus Mortierella occur ubiquitously in soils where they play pivotal roles in carbon cycling, xenobiont degradation, and promoting plant growth. These important fungi are, however, threatened by micropredators such as fungivorous nematodes, and yet little is known about their protective tactics. We report that Mortierella verticillata NRRL 6337 harbors a bacterial endosymbiont that efficiently shields its host from nematode attacks with anthelmintic metabolites. Microscopic investigation and 16S ribosomal DNA analysis revealed that a previously overlooked bacterial symbiont belonging to the genus Mycoavidus dwells in M. verticillata hyphae. Metabolic profiling of the wild-type fungus and a symbiont-free strain obtained by antibiotic treatment as well as genome analyses revealed that highly cytotoxic macrolactones (CJ-12,950 and CJ-13,357, syn necroxime C and D), initially thought to be metabolites of the soil-inhabiting fungus, are actually biosynthesized by the endosymbiont. According to comparative genomics, the symbiont belongs to a new species (Candidatus Mycoavidus necroximicus) with 12% of its 2.2 Mb genome dedicated to natural product biosynthesis, including the modular polyketide-nonribosomal peptide synthetase for necroxime assembly. Using Caenorhabditis elegans and the fungivorous nematode Aphelenchus avenae as test strains, we show that necroximes exert highly potent anthelmintic activities. Effective host protection was demonstrated in cocultures of nematodes with symbiotic and chemically complemented aposymbiotic fungal strains. Image analysis and mathematical quantification of nematode movement enabled evaluation of the potency. Our work describes a relevant role for endofungal bacteria in protecting fungi against mycophagous nematodes.


Assuntos
Anti-Helmínticos/farmacologia , Burkholderiaceae/fisiologia , Lactonas/farmacologia , Metagenoma , Mortierella/fisiologia , Nematoides/efeitos dos fármacos , Simbiose , Animais , Genômica , Redes e Vias Metabólicas , Mortierella/efeitos dos fármacos , Nematoides/patogenicidade , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Filogenia , Microbiologia do Solo
2.
Angew Chem Int Ed Engl ; 62(42): e202308540, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37650335

RESUMO

Rhizonin A and B are hepatotoxic cyclopeptides produced by bacterial endosymbionts (Mycetohabitans endofungorum) of the fungus Rhizopus microsporus. Their toxicity critically depends on the presence of 3-furylalanine (Fua) residues, which also occur in pharmaceutically relevant cyclopeptides of the endolide and bingchamide families. The biosynthesis and incorporation of Fua by non-ribosomal peptide synthetases (NRPS), however, has remained elusive. By genome sequencing and gene inactivation we elucidated the gene cluster responsible for rhizonin biosynthesis. A suite of isotope labeling experiments identified tyrosine and l-DOPA as Fua precursors and provided the first mechanistic insight. Bioinformatics, mutational analysis and heterologous reconstitution identified dioxygenase RhzB as necessary and sufficient for Fua formation. RhzB is a novel type of heme-dependent aromatic oxygenases (HDAO) that enabled the discovery of the bingchamide biosynthesis gene cluster through genome mining.


Assuntos
Biologia Computacional , Peptídeos Cíclicos , Humanos , Peptídeos Cíclicos/química , Família Multigênica , Fungos/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo
3.
Chembiochem ; 22(11): 1920-1924, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33739557

RESUMO

Sinapigladioside is a rare isothiocyanate-bearing natural product from beetle-associated bacteria (Burkholderia gladioli) that might protect beetle offspring against entomopathogenic fungi. The biosynthetic origin of sinapigladioside has been elusive, and little is known about bacterial isothiocyanate biosynthesis in general. On the basis of stable-isotope labeling, bioinformatics, and mutagenesis, we identified the sinapigladioside biosynthesis gene cluster in the symbiont and found that an isonitrile synthase plays a key role in the biosynthetic pathway. Genome mining and network analyses indicate that related gene clusters are distributed across various bacterial phyla including producers of both nitriles and isothiocyanates. Our findings support a model for bacterial isothiocyanate biosynthesis by sulfur transfer into isonitrile precursors.


Assuntos
Antifúngicos/metabolismo , Burkholderia/metabolismo , Isotiocianatos/metabolismo , Antifúngicos/química , Antifúngicos/farmacologia , Vias Biossintéticas , Burkholderia/genética , Hypocreales/efeitos dos fármacos , Isotiocianatos/química , Isotiocianatos/farmacologia , Testes de Sensibilidade Microbiana , Conformação Molecular
4.
Chembiochem ; 22(19): 2901-2907, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34232540

RESUMO

Soft rot disease of edible mushrooms leads to rapid degeneration of fungal tissue and thus severely affects farming productivity worldwide. The bacterial mushroom pathogen Burkholderia gladioli pv. agaricicola has been identified as the cause. Yet, little is known about the molecular basis of the infection, the spatial distribution and the biological role of antifungal agents and toxins involved in this infectious disease. We combine genome mining, metabolic profiling, MALDI-Imaging and UV Raman spectroscopy, to detect, identify and visualize a complex of chemical mediators and toxins produced by the pathogen during the infection process, including toxoflavin, caryoynencin, and sinapigladioside. Furthermore, targeted gene knockouts and in vitro assays link antifungal agents to prevalent symptoms of soft rot, mushroom browning, and impaired mycelium growth. Comparisons of related pathogenic, mutualistic and environmental Burkholderia spp. indicate that the arsenal of antifungal agents may have paved the way for ancestral bacteria to colonize niches where frequent, antagonistic interactions with fungi occur. Our findings not only demonstrate the power of label-free, in vivo detection of polyyne virulence factors by Raman imaging, but may also inspire new approaches to disease control.


Assuntos
Agaricales/efeitos dos fármacos , Toxinas Bacterianas/análise , Imagem Molecular , Doenças das Plantas/induzido quimicamente , Agaricales/metabolismo , Antifúngicos/farmacologia , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/metabolismo , Burkholderia gladioli/efeitos dos fármacos , Burkholderia gladioli/metabolismo , Burkholderia gladioli/patogenicidade , Testes de Sensibilidade Microbiana
5.
Angew Chem Int Ed Engl ; 59(48): 21535-21540, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32780428

RESUMO

Mining the genome of the food-spoiling bacterium Burkholderia gladioli pv. cocovenenans revealed five nonribosomal peptide synthetase (NRPS) gene clusters, including an orphan gene locus (bol). Gene inactivation and metabolic profiling linked the bol gene cluster to novel bolaamphiphilic lipopeptides with antimycobacterial activity. A combination of chemical analysis and bioinformatics elucidated the structures of bolagladin A and B, lipocyclopeptides featuring an unusual dehydro-ß-alanine enamide linker fused to an unprecedented tricarboxylic fatty acid tail. Through a series of targeted gene deletions, we proved the involvement of a designated citrate synthase (CS), priming ketosynthases III (KS III), a type II NRPS, including a novel desaturase for enamide formation, and a multimodular NRPS in generating the cyclopeptide. Network analyses revealed the evolutionary origin of the CS and identified cryptic CS/NRPS gene loci in various bacterial genomes.


Assuntos
Antibacterianos/biossíntese , Burkholderia gladioli/enzimologia , Citrato (si)-Sintase/metabolismo , Lipopeptídeos/biossíntese , Peptídeo Sintases/metabolismo , Antibacterianos/química , Citrato (si)-Sintase/genética , Lipopeptídeos/química , Conformação Molecular , Peptídeo Sintases/genética , Filogenia
6.
Angew Chem Int Ed Engl ; 59(20): 7766-7771, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32040253

RESUMO

A spider-transmitted fungus (Rhizopus microsporus) that was isolated from necrotic human tissue was found to harbor endofungal bacteria (Burkholderia sp.). Metabolic profiling of the symbionts revealed a complex of cytotoxic agents (necroximes). Their structures were characterized as oxime-substituted benzolactone enamides with a peptidic side chain. The potently cytotoxic necroximes are also formed in symbiosis with the fungal host and could have contributed to the necrosis. Genome sequencing and computational analyses revealed a novel modular PKS/NRPS assembly line equipped with several non-canonical domains. Based on gene-deletion mutants, we propose a biosynthetic model for bacterial benzolactones. We identified specific traits that serve as genetic handles to find related salicylate macrolide pathways (lobatamide, oximidine, apicularen) in various other bacterial genera. Knowledge of the biosynthetic pathway enables biosynthetic engineering and genome-mining approaches.


Assuntos
Mineração de Dados , Lactonas/metabolismo , Rhizopus/metabolismo , Aranhas/microbiologia , Simbiose , Animais , Genômica , Lactonas/toxicidade , Rhizopus/genética , Rhizopus/fisiologia
7.
Angew Chem Int Ed Engl ; 59(51): 23122-23126, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-32588959

RESUMO

Genome mining of one of the protective symbionts (Burkholderia gladioli) of the invasive beetle Lagria villosa revealed a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore. Targeted gene inactivation, metabolic profiling, and bioassays led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont, which are highly active against the entomopathogenic fungus Purpureocillium lilacinum. By mutational analyses, isotope labeling, and computational analyses of the modular polyketide synthase, we found that the rare butenolide moiety of gladiofungins derives from an unprecedented polyketide chain termination reaction involving a glycerol-derived C3 building block. The key role of an A-factor synthase (AfsA)-like offloading domain was corroborated by CRISPR-Cas-mediated gene editing, which facilitated precise excision within a PKS domain.


Assuntos
4-Butirolactona/análogos & derivados , Antifúngicos/farmacologia , Burkholderia/química , Hypocreales/efeitos dos fármacos , Policetídeos/farmacologia , 4-Butirolactona/biossíntese , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Animais , Antifúngicos/química , Antifúngicos/metabolismo , Burkholderia/genética , Burkholderia/metabolismo , Besouros , Testes de Sensibilidade Microbiana , Policetídeos/química , Policetídeos/metabolismo
8.
Chembiochem ; 19(20): 2167-2172, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30113119

RESUMO

The rice seedling blight fungus Rhizopus microsporus harbors endosymbiotic bacteria (Burkholderia rhizoxinica) that produce the virulence factor rhizoxin and control host development. Genome mining indicated a massive inventory of cryptic nonribosomal peptide synthetase (NRPS) genes, which have not yet been linked to any natural products. The discovery and full characterization of a novel cyclopeptide from endofungal bacteria is reported. In silico analysis of an orphan, symbiont-specific NRPS predicted the structure of a nonribosomal peptide, which was targeted by LC-MS/MS profiling of wild-type and engineered null mutants. NMR spectroscopy and chemical derivatization elucidated the structure of the bacterial cyclopeptide. Phylogenetic analyses revealed the relationship of starter C domains for rare N-acetyl-capped peptides. Heptarhizin is produced under symbiotic conditions in geographically constrained strains from the Pacific clade; this indicates a potential ecological role of the peptide.


Assuntos
Burkholderia/metabolismo , Oryza/microbiologia , Peptídeos Cíclicos , Doenças das Plantas/microbiologia , Rhizopus/metabolismo , Plântula/microbiologia , Burkholderia/classificação , Burkholderia/genética , Peptídeo Sintases/metabolismo , Peptídeos Cíclicos/química , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Simbiose
9.
Org Biomol Chem ; 16(37): 8345-8352, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30209475

RESUMO

The rice seedling blight fungus Rhizopus microsporus weakens or kills plants by means of a potent toxin produced by endobacteria (Burkholderia rhizoxinica) that live within the fungal hyphae. The success of the highly attuned microbial interaction is partly based on the bacteria's ability to roam and re-colonize the fungal host. Yet, apart from the toxin, chemical mediators of the symbiosis have remained elusive. By genome mining and comparison we identified a cryptic NRPS gene cluster that is conserved among all sequenced Rhizopus endosymbionts. Metabolic profiling and targeted gene inactivation led to the discovery of a novel linear lipopeptide, holrhizin A, which was fully characterized. Through in vitro and in vivo assays we found that holrhizin acts (A) as a biosurfactant to reduce surface tension, (B) influences the formation of mature biofilms and thus cell motility behavior that ultimately supports the bacterial cells to (C) colonize and invade the fungal host, consequently supporting the re-establishment of the exceptional Burkholderia-Rhizopus symbiosis. We not only unveil structure and function of an linear lipopeptide from endofungal bacteria but also provide a functional link between the symbiont's orphan NRPS genes and a chemical mediator that promotes bacterial invasion into the fungal host.


Assuntos
Burkholderia/genética , Burkholderia/fisiologia , Genômica , Lipopeptídeos/metabolismo , Rhizopus/fisiologia , Simbiose , Sequência Conservada , Família Multigênica/genética
10.
Proteomics ; 16(23): 2997-3008, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27687999

RESUMO

The immune system is permanently exposed to several environmental influences that can have adverse effects on immune cells or organs leading to immunosuppression or inappropriate immunostimulation, called direct immunotoxicity. The natural compound Tulipalin A (TUPA), a lactone with α-methylene-γ-butyrolactone moiety, can influence the immune system and lead to allergic contact dermatitis. This in vitro study focused on effects of TUPA using two immune cell lines (Jurkat T cells and THP-1 monocytes). To evaluate the immunotoxic potential of the compound, a proteomic approach applying 2D gel electrophoresis and MALDI-TOF/TOF-MS in combination with metabolomic analysis was used after exposure of the cells to IC10 of TUPA. THP-1 cells showed a strong robustness to TUPA treatment since only five proteins were altered. In contrast, in Jurkat T cells an increase in the abundance of 66 proteins and a decrease of six proteins was determined. These intracellular proteins were mapped to biological processes. Especially an accumulation of chaperones and an influence on the purine synthesis were observed. The changes in purine synthesis were confirmed by metabolomic analysis. In conclusion, the data indicate possible target processes of low doses of TUPA in Jurkat T cells and provides knowledge of how TUPA affects the functionality of immune cells.


Assuntos
4-Butirolactona/análogos & derivados , Proteômica/métodos , 4-Butirolactona/imunologia , 4-Butirolactona/toxicidade , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Dermatite Alérgica de Contato/etiologia , Eletroforese em Gel Bidimensional , Humanos , Células Jurkat/efeitos dos fármacos , Células Jurkat/imunologia , Células Jurkat/metabolismo , Metaboloma , Dobramento de Proteína/efeitos dos fármacos , Purinas/biossíntese , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Testes de Toxicidade/métodos
11.
ISME J ; 16(12): 2691-2701, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36056153

RESUMO

In invertebrates, the cuticle is the first and major protective barrier against predators and pathogen infections. While immune responses and behavioral defenses are also known to be important for insect protection, the potential of cuticle-associated microbial symbionts to aid in preventing pathogen entry during molting and throughout larval development remains unexplored. Here, we show that bacterial symbionts of the beetle Lagria villosa inhabit unusual dorsal invaginations of the insect cuticle, which remain open to the outer surface and persist throughout larval development. This specialized location enables the release of several symbiont cells and the associated protective compounds during molting. This facilitates ectosymbiont maintenance and extended defense during larval development against antagonistic fungi. One Burkholderia strain, which produces the antifungal compound lagriamide, dominates the community across all life stages, and removal of the community significantly impairs the survival probability of young larvae when exposed to different pathogenic fungi. We localize both the dominant bacterial strain and lagriamide on the surface of eggs, larvae, pupae, and on the inner surface of the molted cuticle (exuvia), supporting extended protection. These results highlight adaptations for effective defense of immature insects by cuticle-associated ectosymbionts, a potentially key advantage for a ground-dwelling insect when confronting pathogenic microbes.


Assuntos
Burkholderia , Besouros , Animais , Besouros/microbiologia , Muda/fisiologia , Pupa , Larva/microbiologia , Insetos , Fungos
12.
PNAS Nexus ; 1(4): pgac152, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36714835

RESUMO

The tight association of the pathogenic fungus Rhizopus microsporus and its toxin-producing, bacterial endosymbionts (Mycetohabitans spp.) is distributed worldwide and has significance for agriculture, food production, and human health. Intriguingly, the endofungal bacteria are essential for the propagation of the fungal host. Yet, little is known about chemical mediators fostering the symbiosis, and universal metabolites that support the mutualistic relationship have remained elusive. Here, we describe the discovery of a complex of specialized metabolites produced by endofungal bacteria under symbiotic conditions. Through full genome sequencing and comparative genomics of eight endofungal symbiont strains from geographically distant regions, we discovered a conserved gene locus (hab) for a nonribosomal peptide synthetase as a unifying trait. Bioinformatics analyses, targeted gene deletions, and chemical profiling uncovered unprecedented depsipeptides (habitasporins) whose structures were fully elucidated. Computational network analysis and labeling experiments granted insight into the biosynthesis of their nonproteinogenic building blocks (pipecolic acid and ß-phenylalanine). Deletion of the hab gene locus was shown to impair the ability of the bacteria to enter their fungal host. Our study unveils a common principle of the endosymbiotic lifestyle of Mycetohabitans species and expands the repertoire of characterized chemical mediators of a globally occurring mutualistic association.

13.
mBio ; 13(5): e0144022, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36005392

RESUMO

The fungus Rhizopus microsporus harbors a bacterial endosymbiont (Mycetohabitans rhizoxinica) for the production of the antimitotic toxin rhizoxin. Although rhizoxin is the causative agent of rice seedling blight, the toxinogenic bacterial-fungal alliance is, not restricted to the plant disease. It has been detected in numerous environmental isolates from geographically distinct sites covering all five continents, thus raising questions regarding the ecological role of rhizoxin beyond rice seedling blight. Here, we show that rhizoxin serves the fungal host in fending off protozoan and metazoan predators. Fluorescence microscopy and coculture experiments with the fungivorous amoeba Protostelium aurantium revealed that ingestion of R. microsporus spores is toxic to P. aurantium. This amoebicidal effect is caused by the dominant bacterial rhizoxin congener rhizoxin S2, which is also lethal toward the model nematode Caenorhabditis elegans. By combining stereomicroscopy, automated image analysis, and quantification of nematode movement, we show that the fungivorous nematode Aphelenchus avenae actively feeds on R. microsporus that is lacking endosymbionts, whereas worms coincubated with symbiotic R. microsporus are significantly less lively. This study uncovers an unexpected ecological role of rhizoxin as shield against micropredators. This finding suggests that predators may function as an evolutionary driving force to maintain toxin-producing endosymbionts in nonpathogenic fungi. IMPORTANCE The soil community is a complex system characterized by predator-prey interactions. Fungi have developed effective strategies to defend themselves against predators. Understanding these strategies is of critical importance for ecology, medicine, and biotechnology. In this study, we shed light on the defense mechanisms of the phytopathogenic Rhizopus-Mycetohabitans symbiosis that has spread worldwide. We report an unexpected role of rhizoxin, a secondary metabolite produced by the bacterium M. rhizoxinica residing within the hyphae of R. microsporus. We show that this bacterial secondary metabolite is utilized by the fungal host to successfully fend off fungivorous protozoan and metazoan predators and thus identified a fundamentally new function of this infamous cytotoxic compound. This endosymbiont-dependent predator defense illustrates an unusual strategy employed by fungi that has broader implications, since it may serve as a model for understanding how animal predation acts as an evolutionary driving force to maintain endosymbionts in nonpathogenic fungi.


Assuntos
Antimitóticos , Burkholderia , Oryza , Toxinas Biológicas , Animais , Burkholderia/metabolismo , Antimitóticos/metabolismo , Macrolídeos , Simbiose , Oryza/microbiologia , Plântula , Solo
14.
Elife ; 102021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33764297

RESUMO

Antibiotics from few culturable microorganisms have saved millions of lives since the 20th century. But with resistance formation, these compounds become increasingly ineffective, while the majority of microbial and with that chemical compound diversity remains inaccessible for cultivation and exploration. Culturing recalcitrant bacteria is a stochastic process. But conventional methods are limited to low throughput. By increasing (i) throughput and (ii) sensitivity by miniaturization, we innovate microbiological cultivation to comply with biological stochasticity. Here, we introduce a droplet-based microscale cultivation system, which is directly coupled to a high-throughput screening for antimicrobial activity prior to strain isolation. We demonstrate that highly parallelized in-droplet cultivation starting from single cells results in the cultivation of yet uncultured species and a significantly higher bacterial diversity than standard agar plate cultivation. Strains able to inhibit intact reporter strains were isolated from the system. A variety of antimicrobial compounds were detected for a selected potent antibiotic producer.


Antibiotics are chemicals derived from microorganisms that can kill the bacteria that harm human health. In the 20th and 21st centuries antibiotics saved millions of lives, but new strains of dangerous bacteria that cannot be killed by antibiotics, known as antibiotic resistant strains, are becoming more frequent. Most antibiotics are produced by only a small group of microorganisms, but many more microorganisms exist in nature. So it is possible that microorganisms outside this small group can produce different antibiotics that are effective against antibiotic resistant strains. Unfortunately, finding the microorganisms that produce these alternative antibiotics is challenging because researchers do not know which bacteria are producing these molecules and how to grow these microorganisms in the laboratory. To solve this problem, Mahler et al. developed a new method for growing a new subset of microorganisms in the laboratory. This would allow researchers to study the new microorganisms under controlled conditions, and determine whether any of the substances they produce have antibiotic properties. Mahler et al. generated tiny droplets that could only contain a single cell of a microorganism, so each microbe could grow alone in its own protected environment. Using this approach, it was possible to grow completely different types of microorganisms than with traditional techniques, and keep them isolated from each other. This allowed each different species of microbe to be screened for antimicrobial activity, allowing the identification of chemicals that could potentially be developed into new antibiotics. This new method is automated and miniaturized, paving the way for growing many more cells in few hours, with very low material and space requirements. These results showcase a way of growing new types of microorganisms in the laboratory, making it easier and faster to study them and determine what chemicals they produce. Understanding a greater variety of microorganisms in detail can help identify new chemicals for industrial applications, including new ways of combating infections.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Técnicas Bacteriológicas/métodos , Ensaios de Triagem em Larga Escala/métodos , Microbiota/fisiologia , Bactérias/crescimento & desenvolvimento , Microbiota/efeitos dos fármacos
15.
ACS Chem Biol ; 14(8): 1811-1818, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31283172

RESUMO

The bacterial endosymbiont (Burkholderia rhizoxinica) of the rice seedling blight fungus (Rhizopus microsporus) harbors a large number of cryptic biosynthesis gene clusters. Genome mining and sequence similarity networks based on an encoded nonribosomal peptide assembly line and the associated pyrrole-forming enzymes in the symbiont indicated that the encoded metabolites are unique among a large number of tentative pyrrole natural products in diverse and unrelated bacterial phyla. By performing comparative metabolic profiling using a mutant generated with an improved pheS Burkholderia counterselection marker, we found that the symbionts' biosynthetic pathway is mainly activated under salt stress and exclusively in symbiosis with the fungal host. The cryptic metabolites were fully characterized as novel pyrrole-substituted depsipeptides (endopyrroles). A broader survey showed that endopyrrole production is a hallmark of geographically distant endofungal bacteria, which produce the peptides solely under symbiotic conditions.


Assuntos
Depsipeptídeos/biossíntese , Pirróis/metabolismo , Simbiose/fisiologia , Burkholderiaceae/genética , Burkholderiaceae/metabolismo , Genoma Bacteriano/fisiologia , Genômica/métodos , Família Multigênica/fisiologia , Estudo de Prova de Conceito , Rhizopus/metabolismo
16.
ACS Chem Biol ; 13(9): 2414-2420, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30160099

RESUMO

Icosalide is an unusual two-tailed lipocyclopeptide antibiotic that was originally isolated from a fungal culture. Yet, its biosynthesis and ecological function have remained enigmatic. By genome mining and metabolic profiling of a bacterial endosymbiont ( Burkholderia gladioli) of the pest beetle Lagria villosa, we unveiled a bacterial origin of icosalide. Functional analysis of the biosynthetic gene locus revealed an unprecedented nonribosomal peptide synthetase (NRPS) that incorporates two ß-hydroxy acids by means of two starter condensation domains in different modules. This unusual assembly line, which may inspire new synthetic biology approaches, is widespread among many symbiotic Burkholderia species from diverse habitats. Biological assays showed that icosalide is active against entomopathogenic bacteria, thus adding to the chemical armory protecting beetle offspring. By creating a null mutant, we found that icosalide is a swarming inhibitor, which may play a role in symbiotic interactions and bears the potential for therapeutic applications.


Assuntos
Antibacterianos/metabolismo , Burkholderia/fisiologia , Besouros/microbiologia , Peptídeos Cíclicos/metabolismo , Simbiose , Animais , Burkholderia/enzimologia , Burkholderia/genética , Genes Bacterianos , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Peptídeos Cíclicos/genética
17.
Toxicol In Vitro ; 40: 45-54, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27998807

RESUMO

Extracts of Arnica spp. are traditionally used due to their anti-inflammatory effects for the topical treatment of e.g. haematoma or muscle distortions. One of the main active compounds is Helenalin, a sesquiterpene lactone that can be found in various Asteraceae. However, immunotoxic effects of the compound are only poorly analysed. In this study, a 2D gel electrophoresis based proteomic approach together with a membrane based proteomic assay, metabolomics and the detection of intracellular reactive oxygen species (iROS) were used to investigate potential immunotoxic properties of Helenalin on the human immune cell lines Jurkat and THP-1 and on human peripheral blood mononuclear cells (PBMC). The study revealed a dose-dependent cytotoxicity towards both tested cell lines and the PBMC. However, the cell lines were less sensitive to the Helenalin treatment than the PBMC. The proteomic assays showed strong effects on the carbohydrate metabolism and the protein folding in THP-1 cells but only weak impact on Jurkat cells. Metabolomic studies as well as iROS detection in THP-1 cells verified the results of the proteomic analysis. In summary, the approaches used in this study were able to identify target pathways of Helenalin especially in THP-1 monocytes and thus enable a risk assessment of the substance.


Assuntos
Anti-Inflamatórios/farmacologia , Sesquiterpenos/farmacologia , Apoptose/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Metaboloma/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos de Guaiano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA