Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Annu Rev Neurosci ; 44: 517-546, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33914591

RESUMO

The mouse, as a model organism to study the brain, gives us unprecedented experimental access to the mammalian cerebral cortex. By determining the cortex's cellular composition, revealing the interaction between its different components, and systematically perturbing these components, we are obtaining mechanistic insight into some of the most basic properties of cortical function. In this review, we describe recent advances in our understanding of how circuits of cortical neurons implement computations, as revealed by the study of mouse primary visual cortex. Further, we discuss how studying the mouse has broadened our understanding of the range of computations performed by visual cortex. Finally, we address how future approaches will fulfill the promise of the mouse in elucidating fundamental operations of cortex.


Assuntos
Córtex Visual , Animais , Camundongos , Neurônios , Estimulação Luminosa
2.
Annu Rev Neurosci ; 38: 413-31, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25938727

RESUMO

Over the past decade, the mouse has emerged as an important model system for studying cortical function, owing to the advent of powerful tools that can record and manipulate neural activity in intact neural circuits. This advance has been particularly prominent in the visual cortex, where studies in the mouse have begun to bridge the gap between cortical structure and function, allowing investigators to determine the circuits that underlie specific visual computations. This review describes the advances in our understanding of the mouse visual cortex, including neural coding, the role of different cell types, and links between vision and behavior, and discusses how recent findings and new approaches can guide future studies.


Assuntos
Córtex Visual/citologia , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Animais , Locomoção/fisiologia , Camundongos , Neurônios/citologia , Neurônios/fisiologia
3.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958822

RESUMO

The goal of this study was to examine commonalities in the molecular basis of learning in mice and humans. In previous work we have demonstrated that the anterior cingulate cortex (ACC) and hippocampus (HC) are involved in learning a two-choice visuospatial discrimination task. Here, we began by looking for candidate genes upregulated in mouse ACC and HC with learning. We then determined which of these were also upregulated in mouse blood. Finally, we used RT-PCR to compare candidate gene expression in mouse blood with that from humans following one of two forms of learning: a working memory task (network training) or meditation (a generalized training shown to change many networks). Two genes were upregulated in mice following learning: caspase recruitment domain-containing protein 6 (Card6) and inosine monophosphate dehydrogenase 2 (Impdh2). The Impdh2 gene product catalyzes the first committed step of guanine nucleotide synthesis and is tightly linked to cell proliferation. The Card6 gene product positively modulates signal transduction. In humans, Card6 was significantly upregulated, and Impdh2 trended toward upregulation with training. These genes have been shown to regulate pathways that influence nuclear factor kappa B (NF-κB), a factor previously found to be related to enhanced synaptic function and learning.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Transdução de Sinais , Humanos , Camundongos , Animais , Proteínas Adaptadoras de Sinalização CARD/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Aprendizagem , Encéfalo/metabolismo
4.
Proc Natl Acad Sci U S A ; 115(27): E6339-E6346, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915074

RESUMO

Recent reports have begun to elucidate mechanisms by which learning and experience produce white matter changes in the brain. We previously reported changes in white matter surrounding the anterior cingulate cortex in humans after 2-4 weeks of meditation training. We further found that low-frequency optogenetic stimulation of the anterior cingulate in mice increased time spent in the light in a light/dark box paradigm, suggesting decreased anxiety similar to what is observed following meditation training. Here, we investigated the impact of this stimulation at the cellular level. We found that laser stimulation in the range of 1-8 Hz results in changes to subcortical white matter projection fibers in the corpus callosum. Specifically, stimulation resulted in increased oligodendrocyte proliferation, accompanied by a decrease in the g-ratio within the corpus callosum underlying the anterior cingulate cortex. These results suggest that low-frequency stimulation can result in activity-dependent remodeling of myelin, giving rise to enhanced connectivity and altered behavior.


Assuntos
Ansiedade/fisiopatologia , Corpo Caloso/fisiopatologia , Estimulação Encefálica Profunda , Optogenética , Substância Branca/fisiopatologia , Animais , Ansiedade/patologia , Corpo Caloso/patologia , Camundongos , Substância Branca/patologia
5.
Proc Natl Acad Sci U S A ; 114(10): 2532-2537, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28223484

RESUMO

Meditation training induces changes at both the behavioral and neural levels. A month of meditation training can reduce self-reported anxiety and other dimensions of negative affect. It also can change white matter as measured by diffusion tensor imaging and increase resting-state midline frontal theta activity. The current study tests the hypothesis that imposing rhythms in the mouse anterior cingulate cortex (ACC), by using optogenetics to induce oscillations in activity, can produce behavioral changes. Mice were randomly assigned to groups and were given twenty 30-min sessions of light pulses delivered at 1, 8, or 40 Hz over 4 wk or were assigned to a no-laser control condition. Before and after the month all mice were administered a battery of behavioral tests. In the light/dark box, mice receiving cortical stimulation had more light-side entries, spent more time in the light, and made more vertical rears than mice receiving rhythmic cortical suppression or no manipulation. These effects on light/dark box exploratory behaviors are associated with reduced anxiety and were most pronounced following stimulation at 1 and 8 Hz. No effects were seen related to basic motor behavior or exploration during tests of novel object and location recognition. These data support a relationship between lower-frequency oscillations in the mouse ACC and the expression of anxiety-related behaviors, potentially analogous to effects seen with human practitioners of some forms of meditation.


Assuntos
Ansiedade/terapia , Giro do Cíngulo/fisiopatologia , Meditação/métodos , Substância Branca/fisiopatologia , Animais , Ansiedade/patologia , Ansiedade/fisiopatologia , Escala de Avaliação Comportamental , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Estimulação Elétrica , Eletrodos Implantados , Eletroencefalografia , Comportamento Exploratório/fisiologia , Feminino , Giro do Cíngulo/patologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Optogenética/métodos , Periodicidade , Técnicas Estereotáxicas , Substância Branca/patologia
6.
J Neurosci ; 38(19): 4531-4542, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29661964

RESUMO

Receptive field properties of individual visual neurons are dictated by the precise patterns of synaptic connections they receive, including the arrangement of inputs in visual space and features such as polarity (On vs Off). The inputs from the retina to the lateral geniculate nucleus (LGN) in the mouse undergo significant refinement during development. However, it is unknown how this refinement corresponds to the establishment of functional visual response properties. Here we conducted in vivo and in vitro recordings in the mouse LGN, beginning just after natural eye opening, to determine how receptive fields develop as excitatory and feedforward inhibitory retinal afferents refine. Experiments used both male and female subjects. For in vivo assessment of receptive fields, we performed multisite extracellular recordings in awake mice. Spatial receptive fields at eye-opening were >2 times larger than in adulthood, and decreased in size over the subsequent week. This topographic refinement was accompanied by other spatial changes, such as a decrease in spot size preference and an increase in surround suppression. Notably, the degree of specificity in terms of On/Off and sustained/transient responses appeared to be established already at eye opening and did not change. We performed in vitro recordings of the synaptic responses evoked by optic tract stimulation across the same time period. These recordings revealed a pairing of decreased excitatory and increased feedforward inhibitory convergence, providing a potential mechanism to explain the spatial receptive field refinement.SIGNIFICANCE STATEMENT The development of precise patterns of retinogeniculate connectivity has been a powerful model system for understanding the mechanisms underlying the activity-dependent refinement of sensory systems. Here we link the maturation of spatial receptive field properties in the lateral geniculate nucleus (LGN) to the remodeling of retinal and inhibitory feedforward convergence onto LGN neurons. These findings should thus provide a starting point for testing the cell type-specific plasticity mechanisms that lead to refinement of different excitatory and inhibitory inputs, and for determining the effect of these mechanisms on the establishment of mature receptive fields in the LGN.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Corpos Geniculados/crescimento & desenvolvimento , Corpos Geniculados/fisiologia , Inibição Neural/fisiologia , Percepção Espacial/fisiologia , Campos Visuais/fisiologia , Envelhecimento/fisiologia , Animais , Espaço Extracelular/fisiologia , Feminino , Masculino , Camundongos , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios Aferentes/fisiologia , Trato Óptico/citologia , Trato Óptico/fisiologia , Estimulação Luminosa , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/fisiologia , Sinapses/fisiologia , Tálamo/fisiologia
7.
J Neurosci ; 35(8): 3370-83, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25716837

RESUMO

The laminar structure and conserved cellular organization of mouse visual cortex provide a useful model to determine the mechanisms underlying the development of visual system function. However, the normal development of many receptive field properties has not yet been thoroughly quantified, particularly with respect to layer identity and in the absence of anesthesia. Here, we use multisite electrophysiological recording in the awake mouse across an extended period of development, starting at eye opening, to measure receptive field properties and behavioral-state modulation of responsiveness. We find selective responses for orientation, direction, and spatial frequency at eye opening, which are similar across cortical layers. After this initial similarity, we observe layer-specific maturation of orientation selectivity, direction selectivity, and linearity over the following week. Developmental increases in selectivity are most robust and similar between layers 2-4, whereas layers 5 and 6 undergo distinct refinement patterns. Finally, we studied layer-specific behavioral-state modulation of cortical activity and observed a striking reorganization in the effects of running on response gain. During week 1 after eye opening, running increases responsiveness in layers 4 and 5, whereas in adulthood, the effects of running are most pronounced in layer 2/3. Together, these data demonstrate that response selectivity is present in all layers of the primary visual cortex (V1) at eye opening in the awake mouse and identify the features of basic V1 function that are further shaped over this early developmental period in a layer-specific manner.


Assuntos
Neurônios/fisiologia , Córtex Visual/crescimento & desenvolvimento , Vigília , Animais , Mapeamento Encefálico , Movimentos Oculares , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Corrida , Navegação Espacial , Córtex Visual/citologia , Córtex Visual/fisiologia , Campos Visuais
8.
J Neurosci ; 35(34): 11946-59, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26311776

RESUMO

Survivors of preterm birth are at high risk of pervasive cognitive and learning impairments, suggesting disrupted early brain development. The limits of viability for preterm birth encompass the third trimester of pregnancy, a "precritical period" of activity-dependent development characterized by the onset of spontaneous and evoked patterned electrical activity that drives neuronal maturation and formation of cortical circuits. Reduced background activity on electroencephalogram (EEG) is a sensitive marker of brain injury in human preterm infants that predicts poor neurodevelopmental outcome. We studied a rodent model of very early hypoxic-ischemic brain injury to investigate effects of injury on both general background and specific patterns of cortical activity measured with EEG. EEG background activity is depressed transiently after moderate hypoxia-ischemia with associated loss of spindle bursts. Depressed activity, in turn, is associated with delayed expression of glutamate receptor subunits and transporters. Cortical pyramidal neurons show reduced dendrite development and spine formation. Complementing previous observations in this model of impaired visual cortical plasticity, we find reduced somatosensory whisker barrel plasticity. Finally, EEG recordings from human premature newborns with brain injury demonstrate similar depressed background activity and loss of bursts in the spindle frequency band. Together, these findings suggest that abnormal development after early brain injury may result in part from disruption of specific forms of brain activity necessary for activity-dependent circuit development. SIGNIFICANCE STATEMENT: Preterm birth and term birth asphyxia result in brain injury from inadequate oxygen delivery and constitute a major and growing worldwide health problem. Poor outcomes are noted in a majority of very premature (<25 weeks gestation) newborns, resulting in death or life-long morbidity with motor, sensory, learning, behavioral, and language disabilities that limit academic achievement and well-being. Limited progress has been made to develop therapies that improve neurologic outcomes. The overall objective of this study is to understand the effect of early brain injury on activity-dependent brain development and cortical plasticity to develop new treatments that will optimize repair and recovery after brain injury.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiopatologia , Desenvolvimento Infantil/fisiologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Plasticidade Neuronal/fisiologia , Animais , Animais Recém-Nascidos , Eletroencefalografia/métodos , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Estudos Prospectivos , Ratos , Ratos Long-Evans , Vibrissas/inervação , Vibrissas/fisiologia
9.
J Neurophysiol ; 115(6): 2852-66, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26912600

RESUMO

Sensory-driven behaviors engage a cascade of cortical regions to process sensory input and generate motor output. To investigate the temporal dynamics of neural activity at this global scale, we have improved and integrated tools to perform functional imaging across large areas of cortex using a transgenic mouse expressing the genetically encoded calcium sensor GCaMP6s, together with a head-fixed visual discrimination behavior. This technique allows imaging of activity across the dorsal surface of cortex, with spatial resolution adequate to detect differential activity in local regions at least as small as 100 µm. Imaging during an orientation discrimination task reveals a progression of activity in different cortical regions associated with different phases of the task. After cortex-wide patterns of activity are determined, we demonstrate the ability to select a region that displayed conspicuous responses for two-photon microscopy and find that activity in populations of individual neurons in that region correlates with locomotion in trained mice. We expect that this paradigm will be a useful probe of information flow and network processing in brain-wide circuits involved in many sensory and cognitive processes.


Assuntos
Córtex Cerebral/fisiologia , Discriminação Psicológica/fisiologia , Neuroimagem Funcional , Locomoção/fisiologia , Percepção Visual/fisiologia , Animais , Mapeamento Encefálico , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Microscopia , Testes Neuropsicológicos
10.
J Neurosci ; 34(46): 15437-45, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25392510

RESUMO

Auditory cortex is necessary for the perceptual detection of brief gaps in noise, but is not necessary for many other auditory tasks such as frequency discrimination, prepulse inhibition of startle responses, or fear conditioning with pure tones. It remains unclear why auditory cortex should be necessary for some auditory tasks but not others. One possibility is that auditory cortex is causally involved in gap detection and other forms of temporal processing in order to associate meaning with temporally structured sounds. This predicts that auditory cortex should be necessary for associating meaning with gaps. To test this prediction, we developed a fear conditioning paradigm for mice based on gap detection. We found that pairing a 10 or 100 ms gap with an aversive stimulus caused a robust enhancement of gap detection measured 6 h later, which we refer to as fear potentiation of gap detection. Optogenetic suppression of auditory cortex during pairing abolished this fear potentiation, indicating that auditory cortex is critically involved in associating temporally structured sounds with emotionally salient events.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Estimulação Acústica , Potenciais de Ação/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Inibição Neural/fisiologia , Neurônios/fisiologia , Optogenética , Fatores de Tempo
11.
J Neurosci ; 33(11): 4642-56, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23486939

RESUMO

The thalamus is crucial in determining the sensory information conveyed to cortex. In the visual system, the thalamic lateral geniculate nucleus (LGN) is generally thought to encode simple center-surround receptive fields, which are combined into more sophisticated features in cortex, such as orientation and direction selectivity. However, recent evidence suggests that a more diverse set of retinal ganglion cells projects to the LGN. We therefore used multisite extracellular recordings to define the repertoire of visual features represented in the LGN of mouse, an emerging model for visual processing. In addition to center-surround cells, we discovered a substantial population with more selective coding properties, including direction and orientation selectivity, as well as neurons that signal absence of contrast in a visual scene. The direction and orientation selective neurons were enriched in regions that match the termination zones of direction selective ganglion cells from the retina, suggesting a source for their tuning. Together, these data demonstrate that the mouse LGN contains a far more elaborate representation of the visual scene than current models posit. These findings should therefore have a significant impact on our understanding of the computations performed in mouse visual cortex.


Assuntos
Mapeamento Encefálico , Corpos Geniculados/citologia , Neurônios/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Potenciais de Ação , Animais , Biofísica , Feminino , Fatores de Transcrição Forkhead/metabolismo , Corpos Geniculados/fisiologia , Proteínas de Fluorescência Verde , Técnicas In Vitro , Indóis/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estimulação Luminosa , Proteínas Repressoras/metabolismo , Células Ganglionares da Retina/fisiologia , Versicanas/metabolismo , Campos Visuais/fisiologia
12.
Curr Opin Neurobiol ; 86: 102882, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704868

RESUMO

In the natural world, animals use vision for a wide variety of behaviors not reflected in most laboratory paradigms. Although mice have low-acuity vision, they use their vision for many natural behaviors, including predator avoidance, prey capture, and navigation. They also perform active sensing, moving their head and eyes to achieve behavioral goals and acquire visual information. These aspects of natural vision result in visual inputs and corresponding behavioral outputs that are outside the range of conventional vision studies but are essential aspects of visual function. Here, we review recent studies in mice that have tapped into natural behavior and active sensing to reveal the computational logic of neural circuits for vision.


Assuntos
Comportamento Animal , Animais , Camundongos , Comportamento Animal/fisiologia , Percepção Visual/fisiologia , Visão Ocular/fisiologia , Vias Visuais/fisiologia
13.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38463997

RESUMO

Sex chromosomes are critical elements of sexual reproduction in many animal and plant taxa, however they show incredible diversity and rapid turnover even within clades. Here, using a chromosome-level assembly generated with long read sequencing, we report the first evidence for genetic sex determination in cephalopods. We have uncovered a sex chromosome in California two-spot octopus (Octopus bimaculoides) in which males/females show ZZ/ZO karyotypes respectively. We show that the octopus Z chromosome is an evolutionary outlier with respect to divergence and repetitive element content as compared to other chromosomes and that it is present in all coleoid cephalopods that we have examined. Our results suggest that the cephalopod Z chromosome originated between 455 and 248 million years ago and has been conserved to the present, making it the among the oldest conserved animal sex chromosomes known.

15.
Curr Biol ; 33(20): R1106-R1118, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37875093

RESUMO

Coleoid cephalopods (octopuses, squids and cuttlefishes) are the only branch of the animal kingdom outside of vertebrates to have evolved both a large brain and camera-type eyes. They are highly dependent on vision, with the majority of their brain devoted to visual processing. Their excellent vision supports a range of advanced visually guided behaviors, from navigation and prey capture, to the ability to camouflage based on their surroundings. However, their brain organization is radically different from that of vertebrates, as well as other invertebrates, providing a unique opportunity to explore how a novel neural architecture for vision is organized and functions. Relatively few studies have examined the cephalopod visual system using current neuroscience approaches, to the extent that there has not even been a measurement of single-cell receptive fields in their central visual system. Therefore, there remains a tremendous amount that is unknown about the neural basis of vision in these extraordinary animals. Here, we review the existing knowledge of the organization and function of the cephalopod visual system to provide a framework for examining the neural circuits and computational mechanisms mediating their remarkable visual capabilities.


Assuntos
Octopodiformes , Percepção Visual , Animais , Encéfalo , Decapodiformes , Visão Ocular
16.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398256

RESUMO

Despite their immense success as a model of macaque visual cortex, deep convolutional neural networks (CNNs) have struggled to predict activity in visual cortex of the mouse, which is thought to be strongly dependent on the animal's behavioral state. Furthermore, most computational models focus on predicting neural responses to static images presented under head fixation, which are dramatically different from the dynamic, continuous visual stimuli that arise during movement in the real world. Consequently, it is still unknown how natural visual input and different behavioral variables may integrate over time to generate responses in primary visual cortex (V1). To address this, we introduce a multimodal recurrent neural network that integrates gaze-contingent visual input with behavioral and temporal dynamics to explain V1 activity in freely moving mice. We show that the model achieves state-of-the-art predictions of V1 activity during free exploration and demonstrate the importance of each component in an extensive ablation study. Analyzing our model using maximally activating stimuli and saliency maps, we reveal new insights into cortical function, including the prevalence of mixed selectivity for behavioral variables in mouse V1. In summary, our model offers a comprehensive deep-learning framework for exploring the computational principles underlying V1 neurons in freely-moving animals engaged in natural behavior.

17.
bioRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824726

RESUMO

Cephalopods are highly visual animals with camera-type eyes, large brains, and a rich repertoire of visually guided behaviors. However, the cephalopod brain evolved independently from that of other highly visual species, such as vertebrates, and therefore the neural circuits that process sensory information are profoundly different. It is largely unknown how their powerful but unique visual system functions, since there have been no direct neural measurements of visual responses in the cephalopod brain. In this study, we used two-photon calcium imaging to record visually evoked responses in the primary visual processing center of the octopus central brain, the optic lobe, to determine how basic features of the visual scene are represented and organized. We found spatially localized receptive fields for light (ON) and dark (OFF) stimuli, which were retinotopically organized across the optic lobe, demonstrating a hallmark of visual system organization shared across many species. Examination of these responses revealed transformations of the visual representation across the layers of the optic lobe, including the emergence of the OFF pathway and increased size selectivity. We also identified asymmetries in the spatial processing of ON and OFF stimuli, which suggest unique circuit mechanisms for form processing that may have evolved to suit the specific demands of processing an underwater visual scene. This study provides insight into the neural processing and functional organization of the octopus visual system, highlighting both shared and unique aspects, and lays a foundation for future studies of the neural circuits that mediate visual processing and behavior in cephalopods. Highlights: The functional organization and visual response properties of the cephalopod visual system are largely unknownUsing calcium imaging, we performed mapping of visual responses in the octopus optic lobeVisual responses demonstrate localized ON and OFF receptive fields with retinotopic organizationON/OFF pathways and size selectivity emerge across layers of the optic lobe and have distinct properties relative to other species.

18.
Curr Biol ; 33(13): 2784-2793.e3, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343556

RESUMO

Cephalopods are highly visual animals with camera-type eyes, large brains, and a rich repertoire of visually guided behaviors. However, the cephalopod brain evolved independently from those of other highly visual species, such as vertebrates; therefore, the neural circuits that process sensory information are profoundly different. It is largely unknown how their powerful but unique visual system functions, as there have been no direct neural measurements of visual responses in the cephalopod brain. In this study, we used two-photon calcium imaging to record visually evoked responses in the primary visual processing center of the octopus central brain, the optic lobe, to determine how basic features of the visual scene are represented and organized. We found spatially localized receptive fields for light (ON) and dark (OFF) stimuli, which were retinotopically organized across the optic lobe, demonstrating a hallmark of visual system organization shared across many species. An examination of these responses revealed transformations of the visual representation across the layers of the optic lobe, including the emergence of the OFF pathway and increased size selectivity. We also identified asymmetries in the spatial processing of ON and OFF stimuli, which suggest unique circuit mechanisms for form processing that may have evolved to suit the specific demands of processing an underwater visual scene. This study provides insight into the neural processing and functional organization of the octopus visual system, highlighting both shared and unique aspects, and lays a foundation for future studies of the neural circuits that mediate visual processing and behavior in cephalopods.


Assuntos
Octopodiformes , Animais , Olho , Percepção Visual , Sistema Nervoso , Vias Visuais/fisiologia
19.
Nat Neurosci ; 26(12): 2192-2202, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37996524

RESUMO

Animals move their head and eyes as they explore the visual scene. Neural correlates of these movements have been found in rodent primary visual cortex (V1), but their sources and computational roles are unclear. We addressed this by combining head and eye movement measurements with neural recordings in freely moving mice. V1 neurons responded primarily to gaze shifts, where head movements are accompanied by saccadic eye movements, rather than to head movements where compensatory eye movements stabilize gaze. A variety of activity patterns followed gaze shifts and together these formed a temporal sequence that was absent in darkness. Gaze-shift responses resembled those evoked by sequentially flashed stimuli, suggesting a large component corresponds to onset of new visual input. Notably, neurons responded in a sequence that matches their spatial frequency bias, consistent with coarse-to-fine processing. Recordings in freely gazing marmosets revealed a similar sequence following saccades, also aligned to spatial frequency preference. Our results demonstrate that active vision in both mice and marmosets consists of a dynamic temporal sequence of neural activity associated with visual sampling.


Assuntos
Callithrix , Fixação Ocular , Animais , Camundongos , Movimentos Oculares , Movimentos Sacádicos , Percepção Visual , Movimentos da Cabeça/fisiologia
20.
Curr Biol ; 33(13): 2774-2783.e5, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343558

RESUMO

Cephalopods are remarkable among invertebrates for their cognitive abilities, adaptive camouflage, novel structures, and propensity for recoding proteins through RNA editing. Due to the lack of genetically tractable cephalopod models, however, the mechanisms underlying these innovations are poorly understood. Genome editing tools such as CRISPR-Cas9 allow targeted mutations in diverse species to better link genes and function. One emerging cephalopod model, Euprymna berryi, produces large numbers of embryos that can be easily cultured throughout their life cycle and has a sequenced genome. As proof of principle, we used CRISPR-Cas9 in E. berryi to target the gene for tryptophan 2,3 dioxygenase (TDO), an enzyme required for the formation of ommochromes, the pigments present in the eyes and chromatophores of cephalopods. CRISPR-Cas9 ribonucleoproteins targeting tdo were injected into early embryos and then cultured to adulthood. Unexpectedly, the injected specimens were pigmented, despite verification of indels at the targeted sites by sequencing in injected animals (G0s). A homozygote knockout line for TDO, bred through multiple generations, was also pigmented. Surprisingly, a gene encoding indoleamine 2,3, dioxygenase (IDO), an enzyme that catalyzes the same reaction as TDO in vertebrates, was also present in E. berryi. Double knockouts of both tdo and ido with CRISPR-Cas9 produced an albino phenotype. We demonstrate the utility of these albinos for in vivo imaging of Ca2+ signaling in the brain using two-photon microscopy. These data show the feasibility of making gene knockout cephalopod lines that can be used for live imaging of neural activity in these behaviorally sophisticated organisms.


Assuntos
Sistemas CRISPR-Cas , Decapodiformes , Animais , Decapodiformes/genética , Edição de Genes/métodos , Técnicas de Inativação de Genes , Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA