Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biotechnol Appl Biochem ; 69(1): 7-19, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33179313

RESUMO

Enzymatic biodiesel production has been at the forefront of biofuels research in recent decades because of the significant environmental advantages it offers, while having the potential to be as effective as conventional chemically catalyzed biodiesel production. However, the higher capital cost, longer reaction time, and sensitivity of enzyme processes have restricted their widespread industrial adoption so far. It is also posited that the lack of research to bring the biodiesel product into final specification has scuppered industrial confidence in the viability of the enzymatic process. Furthermore, the vast majority of literature has focused on the development of immobilized enzyme processes, which seem too costly (and risky) to be used industrially. There has been little focus on liquid lipase formulations such as the Eversa Transform 2.0, which is in fact already used commercially for triglyceride transesterification. It is the objective of this review to highlight new research that focuses on bringing enzymatically produced biodiesel into specification via a liquid lipase polishing process, and the process considerations that come with it.


Assuntos
Biocombustíveis , Lipase , Biotecnologia , Enzimas Imobilizadas/metabolismo , Esterificação , Lipase/metabolismo
2.
Biotechnol Bioeng ; 113(8): 1719-28, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26806356

RESUMO

In this work, we demonstrate the scale-up from an 80 L fed-batch scale to 40 m(3) along with the design of a 4 m(3) continuous process for enzymatic biodiesel production catalyzed by NS-40116 (a liquid formulation of a modified Thermomyces lanuginosus lipase). Based on the analysis of actual pilot plant data for the transesterification of used cooking oil and brown grease, we propose a method applying first order integral analysis to fed-batch data based on either the bound glycerol or free fatty acid content in the oil. This method greatly simplifies the modeling process and gives an indication of the effect of mixing at the various scales (80 L to 40 m(3) ) along with the prediction of the residence time needed to reach a desired conversion in a CSTR. Suitable process metrics reflecting commercial performance such as the reaction time, enzyme efficiency, and reactor productivity were evaluated for both the fed-batch and CSTR cases. Given similar operating conditions, the CSTR operation on average, has a reaction time which is 1.3 times greater than the fed-batch operation. We also showed how the process metrics can be used to quickly estimate the selling price of the enzyme. Assuming a biodiesel selling price of 0.6 USD/kg and a one-time use of the enzyme (0.1% (w/woil ) enzyme dosage); the enzyme can then be sold for 30 USD/kg which ensures that that the enzyme cost is not more than 5% of the biodiesel revenue. Biotechnol. Bioeng. 2016;113: 1719-1728. © 2016 Wiley Periodicals, Inc.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Biocombustíveis , Reatores Biológicos , Lipase/metabolismo , Eurotiales/enzimologia , Microbiologia Industrial
3.
Biotechnol Bioeng ; 111(12): 2446-53, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24902824

RESUMO

Callera™ Trans L, a liquid formulation of Thermomyces lanuginosus lipase, has recently shown great promise as a cost-efficient catalyst for methanolysis of triglyceride substrates, specifically in the BioFAME process. However, identifying the right combination of temperature and concentrations of catalyst, water and methanol to realize the full potential of the reaction system has remained a challenge. This study presents an investigation of the impact of temperature, enzyme and water concentration on the reaction, as well as the effect of methanol feed rate for the conversion of rapeseed oil in a fed-batch reaction system. It was observed that the reaction can be divided into two distinct parts. The first part of the reaction, during which primarily tri- and diglycerides are converted, proceeded at a high rate and thus required a high rate of methanol supply. The second part of the reaction, where the remaining di- and monoglycerides are converted, proceeded at a much lower rate. Consequently, it is necessary to reduce the methanol feed rate during the latter part of the reaction to avoid inhibition or even inactivation of the enzyme. Since the second part of the reaction occupied most of the 24-h reaction time, it was concluded that this is the part of the process where further development efforts should be targeted. This point was demonstrated by partially substituting the catalyst with a lipase with a different specificity, which enhanced the performance during the second phase of the reaction.


Assuntos
Biocombustíveis , Reatores Biológicos , Enzimas Imobilizadas/metabolismo , Lipase/metabolismo , Catálise , Esterificação , Ácidos Graxos/metabolismo , Metanol , Temperatura , Água
4.
Appl Spectrosc ; 77(12): 1333-1343, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801483

RESUMO

Degumming is an oil refinement process in which the naturally occurring phospholipids in crude vegetable oils are removed. Enzymatic degumming results in higher oil yield and more cost-efficient processing compared to traditional degumming processes using only water or acid. Phospholipase C hydrolyses phospholipids into diglycerides and phosphate groups during degumming. The diglyceride content can therefore be considered a good indicator of the state of the enzymatic reaction. This study investigates the use of near-infrared (NIR) spectroscopy and chemometrics to monitor the degumming process by quantifying diglycerides in soybean oil in both off-line and on-line settings. Fifteen enzymatic degumming lab scale batches originating from a definitive screening design (with varying water, acid, and enzyme dosages) were investigated with the aim to develop a NIR spectroscopy prediction method. By applying tailored preprocessing and variable selection methods, the diglyceride content can be predicted with a root mean square error of prediction of 0.06% (w/w) for the off-line set-up and 0.07% (w/w) for the on-line set-up. The results show that the diglyceride content is a good indicator of the enzyme performance and that NIR spectroscopy is a suitable analytical technique for robust real-time diglyceride quantification.


Assuntos
Óleo de Soja , Espectroscopia de Luz Próxima ao Infravermelho , Óleo de Soja/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Diglicerídeos , Óleos de Plantas/química , Fosfolipídeos , Água/química
5.
Foods ; 10(10)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34681417

RESUMO

Enzymatic degumming is a well established process in vegetable oil refinement, resulting in higher oil yield and a more stable downstream processing compared to traditional degumming methods using acid and water. During the reaction, phospholipids in the oil are hydrolyzed to free fatty acids and lyso-phospholipids. The process is typically monitored by off-line laboratory measurements of the free fatty acid content in the oil, and there is a demand for an automated on-line monitoring strategy to increase both yield and understanding of the process dynamics. This paper investigates the option of using Near-Infrared spectroscopy (NIRS) to monitor the enzymatic degumming reaction. A new method for balancing spectral noise and keeping the chemical information in the spectra obtained from a rapid changing chemical process is suggested. The effect of a varying measurement averaging window width (0 to 300 s), preprocessing method and variable selection algorithm is evaluated, aiming to obtain the most accurate and robust calibration model for prediction of the free fatty acid content (% (w/w)). The optimal Partial Least Squares (PLS) model includes eight wavelength variables, as found by rPLS (recursive PLS) calibration, and yields an RMSECV (Root Mean Square Error of Cross Validation) of 0.05% (w/w) free fatty acid using five latent variables.

6.
Biotechnol Biofuels ; 7(1): 29, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24571739

RESUMO

BACKGROUND: Enzymatic biodiesel is becoming an increasingly popular topic in bioenergy literature because of its potential to overcome the problems posed by chemical processes. However, the high cost of the enzymatic process still remains the main drawback for its industrial application, mostly because of the high price of refined oils. Unfortunately, low cost substrates, such as crude soybean oil, often release a product that hardly accomplishes the final required biodiesel specifications and need an additional pretreatment for gums removal. In order to reduce costs and to make the enzymatic process more efficient, we developed an innovative system for enzymatic biodiesel production involving a combination of a lipase and two phospholipases. This allows performing the enzymatic degumming and transesterification in a single step, using crude soybean oil as feedstock, and converting part of the phospholipids into biodiesel. Since the two processes have never been studied together, an accurate analysis of the different reaction components and conditions was carried out. RESULTS: Crude soybean oil, used as low cost feedstock, is characterized by a high content of phospholipids (900 ppm of phosphorus). However, after the combined activity of different phospholipases and liquid lipase Callera Trans L, a complete transformation into fatty acid methyl esters (FAMEs >95%) and a good reduction of phosphorus (P <5 ppm) was achieved. The combination of enzymes allowed avoidance of the acid treatment required for gums removal, the consequent caustic neutralization, and the high temperature commonly used in degumming systems, making the overall process more eco-friendly and with higher yield. Once the conditions were established, the process was also tested with different vegetable oils with variable phosphorus contents. CONCLUSIONS: Use of liquid lipase Callera Trans L in biodiesel production can provide numerous and sustainable benefits. Besides reducing the costs derived from enzyme immobilization, the lipase can be used in combination with other enzymes such as phospholipases for gums removal, thus allowing the use of much cheaper, non-refined oils. The possibility to perform degumming and transesterification in a single tank involves a great efficiency increase in the new era of enzymatic biodiesel production at industrial scale.

7.
Appl Biochem Biotechnol ; 163(7): 918-27, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20878260

RESUMO

An integrated biodiesel process that combines enzymatic esterification and alkaline transesterification is suggested. With focus on the enzymatic step, the paper provides proof of concept and suggestions for further process development. Hence, palm fatty acid distillate (PFAD) has been enzymatically converted to fatty acid methyl esters in a two-step process using the immobilized lipase Novozym 435 in packed-bed columns. With only a small excess of methanol, the first reaction stage could reduce the free fatty acid (FFA) content from 85% to 5%. After removal of water by simple phase separation, it was possible to lower the FFA content to 2.5% in a second reaction stage. Both reaction stages are relatively fast with suggested reaction times of 15 min in column 1 (productivity 10 kg/kg/h) and 30 min in column 2 (productivity 5 kg/kg/h), resulting in 15% FFA after column 1 and 5% FFA after column 2. A lifetime study indicated that approximately 3,500 kg PFAD/kg Novozym 435 can be treated in the first reaction stage before the enzyme has become fully inactivated. With further optimization, the enzymatic process could be a real alternative to today's sulfuric acid catalyzed process.


Assuntos
Biocatálise , Biocombustíveis , Lipase/metabolismo , Óleos de Plantas/metabolismo , Destilação , Enzimas Imobilizadas , Esterificação , Ácidos Graxos não Esterificados/química , Ácidos Graxos não Esterificados/metabolismo , Proteínas Fúngicas , Lipase/química , Metanol/química , Óleo de Palmeira , Óleos de Plantas/química , Ácidos Sulfúricos/química
8.
Biotechnol Bioeng ; 97(4): 694-707, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17154316

RESUMO

Oxidation of lactose to lactobionic acid by a Microdochium nivale carbohydrate oxidase was studied. The K(m)-value for lactose, obtained by a traditional enzymatic assay, was 0.066 mM at pH 6.4 and 38 degrees C. The effect of oxygen on the enzymatic rate of reaction as well as the operational stability of the enzyme was studied by performing reactions at constant pH and temperature in a stirred tank reactor. Catalase was included in all reactions to avoid inhibition and deactivation of the oxidase by hydrogen peroxide. At pH 6.4 and 38 degrees C, K(m) for oxygen was 0.97 mM, while the catalytical rate constant, k(cat), was 94 s(-1). Furthermore, we found that the operational stability of the oxidase was dependent on the type of base used for neutralization of the acid produced. Thus, when 2 M NaOH was used for neutralization of a reaction medium containing 50 mM phosphate buffer, significant deactivation of the oxidase was observed. Also, we found that the oxidase was protected against deactivation by base at high lactose concentrations. A simple model is proposed to explain the obtained results.


Assuntos
Ascomicetos/enzimologia , Desidrogenases de Carboidrato/metabolismo , Dissacarídeos/metabolismo , Lactose/metabolismo , Ascomicetos/metabolismo , Reatores Biológicos/microbiologia , Biotransformação , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Temperatura
9.
Biotechnol Bioeng ; 97(4): 842-9, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17154315

RESUMO

Enzymatic oxidation of lactose to lactobionic acid (LBA) by a carbohydrate oxidase from Microdochium nivale was studied in a pilot-scale batch reactor of 600 L working volume using a rotary jet head (RJH) for mixing and mass transfer (Nordkvist et al., 2003, Chem Eng Sci 58:3877-3890). Both lactose and whey permeate were used as substrate, air was used as oxygen source, and catalase was added to eliminate the byproduct hydrogen peroxide. More than 98% conversion to LBA was achieved. Neither enzyme deactivation nor enzyme inhibition was observed under the experimental conditions. The dissolved oxygen tension (DOT) was constant throughout the tank for a given set of operating conditions, indicating that liquid mixing was sufficiently good to avoid oxygen gradients in the tank. However, at a given oxygen tension measured in the tank, the specific rate of reaction found in the RJH system was somewhat higher than previously obtained in a 1 L mechanically stirred tank reactor (Nordkvist et al., 2007, in this issue, pp. 694-707). This can be ascribed to a higher pressure in the recirculation loop which is part of the RJH system. Compared to mechanically stirred systems, high values of the volumetric mass transfer coefficient, k(L)a, were obtained when lactose was used as substrate, especially at low values of the specific power input and the superficial gas velocity. k(L)a was lower for experiments with whey permeate than with lactose due to addition of antifoam. The importance of mass transfer and of the saturation concentration of oxygen on the volumetric rate of reaction was demonstrated by simulations.


Assuntos
Desidrogenases de Carboidrato/metabolismo , Dissacarídeos/biossíntese , Desenho de Equipamento/instrumentação , Ascomicetos/enzimologia , Reatores Biológicos/microbiologia , Catalase/farmacologia , Simulação por Computador , Peróxido de Hidrogênio/metabolismo , Cinética , Lactose/metabolismo , Proteínas do Leite/metabolismo , Oxirredução , Oxigênio/metabolismo , Projetos Piloto , Especificidade por Substrato , Proteínas do Soro do Leite
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA