Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Methods ; 11(1): 100-5, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24240321

RESUMO

A critical requirement for research using model organisms is a well-defined and consistent diet. There is currently no complete chemically defined (holidic) diet available for Drosophila melanogaster. We describe a holidic medium that is equal in performance to an oligidic diet optimized for adult fecundity and lifespan. This holidic diet supports development over multiple generations but at a reduced rate. Over 7 years of experiments, the holidic diet yielded more consistent experimental outcomes than did oligidic food for egg laying by females. Nutrients and drugs were more available to flies in holidic medium and, similar to dietary restriction on oligidic food, amino acid dilution increased fly lifespan. We used this holidic medium to investigate amino acid-specific effects on food-choice behavior and report that folic acid from the microbiota is sufficient for Drosophila development.


Assuntos
Ração Animal , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica/métodos , Aminoácidos/química , Animais , Comportamento Animal , Comportamento de Escolha , Sistemas de Liberação de Medicamentos , Comportamento Alimentar , Feminino , Fertilidade , Genética Comportamental/métodos , Longevidade , Fatores de Tempo
2.
Fortschr Neurol Psychiatr ; 85(9): 541-551, 2017 Sep.
Artigo em Alemão | MEDLINE | ID: mdl-28881362

RESUMO

An adequate perception of the environment is one of the main foundations of adaptive behavior. Furthermore, sensory sensitivity varies from person to person and can play a central role in the development and course of mental disorders. The objective was the development of a questionnaire for the multidimensional assessment of sensory sensitivity. A total of 1417 persons were evaluated with the Sensory Inventory (SI). The factorial validity was tested with exploratory factor analyses and exploratory structural equation modeling. A 6-factorial structure was established. High internal consistency and retest reliability were shown, as well as increased sensory sensitivity and lower body perception in participants with mental disorders. The SI is a short instrument with good test characteristics that can easily be integrated in a clinical or research environment.


Assuntos
Testes Neuropsicológicos , Autoavaliação (Psicologia) , Sensação/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise Fatorial , Feminino , Humanos , Masculino , Transtornos Mentais/psicologia , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Autoimagem , Transtornos de Sensação/diagnóstico , Transtornos de Sensação/psicologia , Inquéritos e Questionários , Adulto Jovem
3.
Nat Commun ; 12(1): 3818, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155207

RESUMO

Viruses manipulate cellular metabolism and macromolecule recycling processes like autophagy. Dysregulated metabolism might lead to excessive inflammatory and autoimmune responses as observed in severe and long COVID-19 patients. Here we show that SARS-CoV-2 modulates cellular metabolism and reduces autophagy. Accordingly, compound-driven induction of autophagy limits SARS-CoV-2 propagation. In detail, SARS-CoV-2-infected cells show accumulation of key metabolites, activation of autophagy inhibitors (AKT1, SKP2) and reduction of proteins responsible for autophagy initiation (AMPK, TSC2, ULK1), membrane nucleation, and phagophore formation (BECN1, VPS34, ATG14), as well as autophagosome-lysosome fusion (BECN1, ATG14 oligomers). Consequently, phagophore-incorporated autophagy markers LC3B-II and P62 accumulate, which we confirm in a hamster model and lung samples of COVID-19 patients. Single-nucleus and single-cell sequencing of patient-derived lung and mucosal samples show differential transcriptional regulation of autophagy and immune genes depending on cell type, disease duration, and SARS-CoV-2 replication levels. Targeting of autophagic pathways by exogenous administration of the polyamines spermidine and spermine, the selective AKT1 inhibitor MK-2206, and the BECN1-stabilizing anthelmintic drug niclosamide inhibit SARS-CoV-2 propagation in vitro with IC50 values of 136.7, 7.67, 0.11, and 0.13 µM, respectively. Autophagy-inducing compounds reduce SARS-CoV-2 propagation in primary human lung cells and intestinal organoids emphasizing their potential as treatment options against COVID-19.


Assuntos
COVID-19/metabolismo , COVID-19/virologia , SARS-CoV-2/metabolismo , Animais , Antinematódeos/farmacologia , Autofagossomos/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , COVID-19/patologia , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Modelos Animais de Doenças , Humanos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Metaboloma , Niclosamida/farmacologia , Organoides , SARS-CoV-2/isolamento & purificação , Espermidina/farmacologia , Espermina/farmacologia , Tratamento Farmacológico da COVID-19
4.
Front Psychiatry ; 11: 718, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793006

RESUMO

Cathepsins are proteases with functions in cellular homeostasis, lysosomal degradation and autophagy. Their role in the development of neurodegenerative diseases has been extensively studied. It is well established that impairment of proper cathepsin function plays a crucial role in the pathophysiology of neurodegenerative diseases, and in recent years a role for cathepsins in mental disorders has emerged given the involvement of cathepsins in memory function, hyperactivity, and in depression- and anxiety-like behavior. Here we review putative cathepsin functions with a special focus on their role in the pathophysiology of psychiatric diseases. Specifically, cathepsins are crucial for maintaining cellular homeostasis, particularly as part of the autophagy machinery of neural strategies underlying acute stress response. Disruption of cathepsin functions can lead to psychiatric diseases such as major depressive disease (MDD), bipolar disorder, and schizophrenia. Specifically, cathepsins can be excreted via a process called secretory autophagy. Thereby, they are able to regulate extracellular factors such as brain-derived neurotrophic factor and perlecan c-terminal fragment LG3 providing maintenance of neuronal homeostasis and mediating neuronal plasticity in response to acute stress or trauma. In addition, impairment of proper cathepsin function can result in impaired synaptic transmission by compromised recycling and biogenesis of synaptic vesicles. Taken together, further investigations on cathepsin functions and stress response, neuroplasticity, and synaptic transmission will be of great interest in understanding the pathophysiology of psychiatric disorders.

5.
Res Microbiol ; 168(6): 558-566, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28365379

RESUMO

Phosphotransferase systems are common and essential in bacteria, which are in charge of sugar transportation and phosphorylation. However, phosphotransferase systems were found in recent years to be associated with environmental stress factors. This study investigated the role of the mannose/fructose/sorbose phosphotransferase systems in Enterococcus faecalis OG1RF in adaption to harsh environments by construction of pts mutants. More than one mannose/fructose/sorbose phosphotransferase system was found in E. faecalis OG1RF, and the elimination of pts gene at different loci generated different after-effects corresponding to different ambiences. An in vitro study showed that the presence of intact phosphotransferase systems in E. faecalis OG1RF promoted resistance to hydrogen peroxide and acid and enhanced susceptibility to pediocin. In vivo study demonstrated that the presence of intact phosphotransferase systems induced more hazardous substances like superoxide dismutase (SOD) in Caenorhabditis elegans and enhanced bacterial infection and survival in macrophages J774A.1 and BMM. In addition, phosphotransferase systems regulated transcription of antioxidant and catabolite genes such as katA, gor, lysR, hypR, rex, hprK and tpx to different extents (-6.3- to 3.5-fold). It is therefore suggested that pts genes are regulatory factors promoting adaption of E. faecalis OG1RF to stressful conditions, thereby enhancing the possibility of bacterial survival and infectivity.


Assuntos
Enterococcus faecalis/enzimologia , Regulação Bacteriana da Expressão Gênica , Fosfotransferases/metabolismo , Estresse Fisiológico , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Linhagem Celular , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Enterococcus faecalis/crescimento & desenvolvimento , Peróxido de Hidrogênio/farmacologia , Macrófagos/microbiologia , Mutação , Pediocinas/farmacologia , Fosfotransferases/genética , Superóxido Dismutase/biossíntese , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA